
***t UK Jut-T.

V,jr ;
.'ripiuei contains color
,jj.:ae3: Ai. ~.TIC reproduet-
1:-- win be ia black and
r';.;.„v ■ ■

CVI
CXI

\ THE PHOTO-REALISTIC AFIT
VIRTUAL COCKPIT

THESIS

Milton Eli Diaz. BS

Captain. USAF

AFIT/GCS/ENG/94D-02

;-'^:Dvcd

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/94D-02

'ion i

THE PHOTO-REALISTIC AFIT
VIRTUAL COCKPIT

A

THESIS

Milton Eli Diaz, BS
Captain, USAF

AFIT/GCS/ENG/94D-02

ffiC<£

DISCLAIMS NOTICJ

TfflS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE

AFIT/GCS/ENG/94D-02

THE PHOTO-REALISTIC AFIT

VIRTUAL COCKPIT

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

Milton Eli Diaz, BS

Captain, USAF

December, 1994

Approved for public release; distribution unlimited

A cknowledgments

I would like to thank all those whose support made my AFIT experience enjoyable.

Special thanks go to Col. Stytz, my thesis advisor, Dr. Lamont, the graphics gang: John

Vanderburgh, Jim Kestermann, and J.J. Rohrer, my buddies Karl Pfeiffer and Bill Wood, and most

of all, my wife, Florence.

Table of Contents

Acknowledgments ii
Table of Contents iii
List of Figures v
List of Table viii
Abstract ix
I. Introduction 1

1.1 Overview 1
1.2 Background 1
1.3 Rationale 4
1.4 Problem Statement 5
1.5 Scope 6
1.6 Performer and ObjectSim 9
1.7 Virtual Cockpit 10
1.8 Methodology 11
1.9 Constraint 13
1.10 Thesis Overview 14

II. Literature Review 15
2.1 Overview 15
2.2 Virtual Environments 15
2.3 Distributed Simulation 16
2.4 Virtual Reality Interfaces 18
2.5 AFIT Information Pod 18
2.6 Conclusion 20

III. Requirements and Motivation 21
3.1 Overview 21
3.2 Detailed Photo-Realistic Models 21
3.3 Head Mounted Display and CRT Interfaces 24
3.4 Mouse and Keyboard Interfaces 25
3.5 Conclusion 26

IV. Design and Methodology 27
4.1 Overview 27
4.2 Model Baseline 27
4.3 Model Construction 28
4.4 Switch Movement 38
4.5 User Interface 44
4.6 Conclusion 48

V. Results and Recommendations 50
5.1 Overview 50
5.2 Results 50
5.3 Recommendations 57
5.4 Summary 59

Appendix A 60
A.l Main Instrument Panel Models 60

in

A.2 Left Console Models 68
A.3 Right Console 75

Appendix B 82
B.l Introduction 82
B.2 Displaying the Static and Dynamic Models 82
B.3 Positioning Panels 85
B.4 Positioning Sub-Panels and Buttons 87

Appendix C 92
C.l Running the Virtual Cockpit 92
C.2 Global Declarations 94

Bibliography 97
Vita 101

IV

List of Figures

Figure 1-1. The LAMARS Full Fidelity Simulator at Wright-Patterson AFB (Markman) 3
Figure 1-2. F-15E Forward Crew Station (Aeronautical) 6
Figure 1-3. 1993 VC Main Instrument Panel 7
Figure 1-4. Photograph of F-15E Simulator Main Instrument Panel 8
Figure 1-5. VC Hierarchy 12
Figure 1-6. 1994 VC Landing Gear Knob 13
Figure 3-la. VC Left Console Hierarchy 22
Figure 3-lb. VC Right Console Hierarchy 22
Figure 3-2. Three Balls 23
Figure 4-1. Photograph of F-15E Simulator Front and Rear Crew Stations Multipurpose

Displays 28
Figure 4-2. F-15E Main Forward Instrument Panel Schematic 29
Figure 4-3. F-15E Left Console Schematic 30
Figure 4-4. F-15E Right Console Schematic 31
Figure 4-5. F-15E model used in the VC is a MultiGen Flight model 32
Figure 4-6. MultiGen Flight Scene Statistics Display (Software Systems) for the F-15E

Model 33
Figure 4-7. Schematic Diagrams of the Sensor Control Panel (left) and the Engine Control

Panel (right) 35
Figure 4-8. Texture File Used for Right Console 36
Figure 4-9. Oxygen Regulator Panel 37
Figure 4-10. Completed Forward Crew Station Right Console 38
Figure 4-11. Static Model of Fire Warning/ Extinguishing Control Panel 39
Figure 4-12. Fire Warning / Extinguishing Control Panel without dynamic switches and

lights 40
Figure 4-13. Fire Warning / Extinguishing Control Panel with dynamic switches, lights,

and cursor 41
Figure 4-14. Fire Warning / Extinguishing Control Panel with toggling buttons displayed 42
Figure 4-15. Landing Gear Panel with Knob Up 43
Figure 4-16. Landing Gear Panel with Knob Down 43
Figure 4-17. Pseudo Code for Initializing Cockpit Models and Mouse-Panels 45
Figure 4-18. Mouse Cursor on the Left Console Nuclear Panel 46
Figure 4-19. Main Instrument Panel with toggle buttons visible over the warning lights 46
Figure 4-20. HMD Tracking Routine 47
Figure 4-21. The Polhemus and Fastrak 48
Figure 5-1. Close-up of 1994 VC Instrument Panel Dials 51
Figure 5-2. Close-up of 1993 VC Instrument Panel Dials 51
Figure 5-3. View of 1994 VC Instrument Panel 52
Figure 5-4. 1993 VC Instrument Panel 52
Figure 5-5. Polygonal Text 53
VC. Figure 5-6. The case statement for controlling the depiction of landing gear 55
Figure A. 1-1. Navigation Panel Model and HUD Display Control Panel 60

Figure A.l-2. Navigation Panel Schematic 61
Figure A.l-3. HUD Display Control Panel Schematic 61
Figure A.l-4. Fire Warning/Extinguishing Control Panel Model 62
Figure A. 1-5. Fire Warning/Extinguishing Control Panel Schematic 62
Figure A. 1-6. Utility and Primary Hydraulic Pressure Indicator Models 63
Figure A. 1 -7. Utility and Primary Hydraulic Pressure Indicator Schematics 63
Figure A.l-8. Landing Gear Panel Model 64
Figure A. 1-9. Landing Gear Panel Schematic 64
Figure A. 1-10. From Left Clockwise: Armament Control Panel, Standby Air Speed

Indicator, Standby Altitude Indicator, Standby Altimeter, Emergency Jettison
Select Switch, Vertical Velocity Indicator, and Angle of Attack Indicator Models 65

Figure A. 1-11. From Left Clockwise: Armament Control Panel, Standby Air Speed
Indicator, Standby Altitude Indicator, Standby Altimeter, Emergency Jettison
Select Switch, Vertical Velocity Indicator, and Angle of Attack Indicator
Schematics 65

Figure A. 1-12. From Top Left to Right: Analog Clock, Cabin Pressure Indicator, Engine
Monitor Display, and Fuel Quantity Indicator Models 66

Figure A. 1-13. From Top Left to Right: Analog Clock, Cabin Pressure Indicator, Engine
Monitor Display, and Fuel Quantity Indicator Schematics 66

Figure A. 1-14. Warning Lights and Multipurpose Display Models 67
Figure A. 1 -15. Multipurpose Display Schematic (Warning Lights not Available) 67
Figure A.2-1. Miscellaneous Control Panel Model 68
Figure A.2-2. Miscellaneous Control Panel Schematic 68
Figure A.2-7. Identification Friend or Foe and Miscellaneous Panel Model 70
Figure A.2-8. Identification Friend or Foe and Miscellaneous Panel Schematic 70
Figure A.2-9. Sensor Control Panel Model 71
Figure A.2-10. Sensor Control Panel Schematic 71
Figure A.2-11. Anti-Collision Control Panel Model 72
Figure A.2-12. Anti-Collision Control Panel Schematic 72
Figure A.2-13. Nuclear Control Panel Model 73
Figure A.2-14. Nuclear Control Panel Schematic 73
Figure A.2-15. Control Augmentation System Control Panel Model 74
Figure A.2-16. Control Augmentation System Control Panel Schematic 74
Figure A.3-1. Environmental Control System and Anti-Ice Control Panel Model 75
Figure A.3-2. Environmental Control System and Anti-Ice Control Panel Schematic 75
Figure A.3-3. Air Conditioner Control Panel Model 76
Figure A.3-4. Air Conditioner Control Panel Schematic 76
Figure A.3-5. Interior Light Control Panel Model 77
Figure A.3-6. Interior Light Control Panel Schematic 77
Figure A.3-7. Video Tape Recorder Control Panel Model 78
Figure A.3-7. Video Tape Recorder Control Panel Schematic 78
Figure A.3-9. Engine Control Panel Model 79
Figure A.3-10. Engine Control Panel Schematic 79
Figure A.3-11. Oxygen Regulator Control Panel Model 80
Figure A.3-12. Oxygen Regulator Control Schematic 80
Figure A.3-13 Compass Control Panel Model 81

VI

Figure A.3-13 Compass Control Panel Schematic 81

VII

List of Table

Table 3.1 Ball Complexity and Frame Rate Impact 23

via

Abstract

The Air Force Institute of Technology (AFIT) has pursued research in virtual environments since
1988. This research expands the current capabilities of the AFIT Virtual Cockpit (VC) by
increasing the realism of the cockpit environment and improving the pilot's command interface.
Realism is improved creating console elements from texture maps and polygonal models; these
elements include working dials, switches and circuit breakers. The pilot command interface is
improved in part by adapting the AFIT Information Pod using a two-dimensional mouse input to
the virtual three-dimensional environment. This immersive virtual environment is also improved by
modifications to the Head Mounted Display (HMD) reducing jitter and allowing the simulation
pilot to adjust his/her position within the cockpit.

IX

The Photo-Realistic AFIT

Virtual Cockpit

I. Introduction

1.1 Overview

The Air Force Institute of Technology (AFIT) Virtual Cockpit (VC) is a virtual reality

cockpit simulation project that examines graphics and human factors issues in a fully immersive

environment. The primary goal of the VC is to develop the technology for a low cost, distributed

interactive simulation (DIS) compatible flight simulator that can be used for large scale tactical

training. Currently, the cost and availability of fully functional dome flight simulators are

prohibitive for large scale interactive simulations. Chapter I discusses the importance of combat

training and flight simulators and the rationale for photo-realistic virtual environment flight

simulations. Also, this chapter expounds on the problem statement, scope, methodology, and

constraints of the research.

1.2 Background

According to Dyer, soldiers learn more about combat in the first thirty seconds of battle

than they learn in all the training beforehand. "Combat is the ultimate reality that Marines - or any

other soldiers, under any flag - have to deal with" (Dyer). However, soldiers must survive their

first exposure to war before they may learn from their combat experience. Although military

training can not fully prepare people for combat, quality training can provide soldiers with the

knowledge needed for survival and eventual victory. On the importance of training, Clausewitz

states: (Clausewitz)

"It is immensely important that no soldier, whatever his rank, should wait for war to

expose him to those aspects of active service that amaze and contuse him when he first

comes across them."

The Value of Training. History provides countless instances of how a nation's military has

benefited from training or suffered from lack of training. For example, at the turn of the

Nineteenth century, Lord Nelson's English fleet defeated two larger and better armed French fleets

at the battles of the Nile and Trafalgar. Nelson's chief advantage in both battles can be attributed

to his highly qualified captains and well trained crews. The English Navy had the luxury of

combat drill and maneuver at sea while the French had to train in port under English blockade

(Taylor). Recently, the Gulf War, fought between Iraq and a coalition of several nations led by the

United States military under the leadership of General Schwarzkopf, provided one more example of

how a military benefits from superior training. Because Iraq's army was considered a veteran force

and was regarded as the world's fourth largest, General Schwarzkopf refused to fill out his force

with the National Guard's "roundout brigades" because he believed the units would not have

received adequate training before the Desert Storm offensive. Instead, General Schwarzkopf

employed his well trained army boldly to drive the enemy from the field (Schwarzkopf).

The best training recreates battle field conditions at as many levels as possible (i.e. from

the tactical decisions a pilot executes during a dog fight to the strategic decisions made by the

commanding general). Peacetime maneuvers such as Red Flag and REFORGER, a combined arms

exercise held in Central Europe, provide combat, support, and command units with insight into the

confused coordination of a battle. However, moving troops to and from maneuvers is expensive

and, as a result, only a few units may participate at any given time. Simulations provide a cost

effective supplement to actual field maneuvers (Gerhard; Rolfe and Staples).

Flight Simulators. Flight simulators have been vastly used since their inception over

eighty years ago. Over the years, there have been considerable improvements from the first

simulators, typically an actual aircraft on a universal joint, to the present day flight simulators.

Simulators have progressed from propeller to jet aircraft simulators and from mechanical

controlled to fly-by-wire (Markman). By 1980, there were more than 300 modern dome flight

simulators that projected a computer generated image onto a dome screen (Rolfe and Staples).

These modern simulators consist of a: visual system, motion base, cockpit, and dynamic aircraft

model (Markman). The simulator's capabilities are based on the simulation's purpose. For

instance, because a cockpit procedures trainer provides training for basic air crew duties, it does

not need to be as complex as a modern flight simulator which attempts to recreate realistic flight

sensations such as motion and acceleration (Hazer and Ringler).

Flight simulators are used either as tools for aircraft development or pilot training. Among

recently used military simulators are the Large Amplitude Multimode Aerospace Research

Simulator (LAMARS), shown in Figure 1-1, located at the Flight Dynamics Laboratory at Wright-

Patterson AFB and the Naval Air Test Center's F/A-18 simulator used to accurately study the

operation of all the F/A-18's systems (Markman).

Figure 1-1. The LAMARS Full Fidelity Simulator at Wright-Patterson AFB (Markman).

According to Markman, in-flight simulators are aircraft that possess feel and flying

characteristics that can be modified to simulate another aircraft. In-flight simulators have been

used for various aircraft development programs, such as the F-16, YF-17, F-18, B-l, and the space

shuttle, and for highly specialized training. The YF-17's potential for pilot induced oscillation was

discovered and corrected due to in-flight simulation before the YF-17's first flight. The

USAF/USN/Calspan Learjet is used for training Air Force and Navy test pilots. (Markman)

1.3 Rationale

One method the Air Force uses to alleviate the cost of training (i.e. missile combat crew

training, pilot training) is the interactive simulator. For a command post exercise, the actual

command post area serves as the interactive simulator. The participants react to information

received from the exercise coordinators on IMF radio and telephone lines. The coordinators

present realistic scenarios that emphasize command post procedures, such as coordinating security

and disaster responses. Because information flows into and out of the command post through

normal channels, the simulation provides all the participants with a realistic experience.

Another method of simulation used in the Air Force is the full scale mock-up. In contrast

to a command post exercise, a mock-up attempts to present a safe environment where training can

address challenging or dangerous concepts which are impractical to address in the field. For

example, the Missile Procedures Trainer (MPT), a life size model of a Missile Control Capsule, is

used to train combat crews in emergency procedures such as injury evacuation of personnel and

special fire fighting techniques. Like the command post exercise, the MPT training session

presents combat crews with information channeled through a variety of input modes such as

telephone lines, audio alarms, warning lights, and computer printouts. Typically, the two MPTs in

a Missile Group are active eighteen hours a day each and five to six days a week in order to

complete the Group's monthly training requirements (Earle).

A flight simulator is a much larger and more expensive mock-up than an MPT. For the

highest quality simulation, the flight simulator requires a large dome screen to present the

out-the-canopy view and lifts to provide the necessary visual and motion cues. The displays and

lifts used in a simulator are two of the factors that impact the cost of flight simulators.

In addition to size and display, a number of factors influence the final cost of a standard

simulator. The Ross-Yarger model for simulator cost analysis lists the following factors: (Ross

and Yarger)

1. computer processing power
2. number of physical crew stations
3. degrees of freedom
4. number of flight & aircraft sensations presented
5. simulator's weight
6. rate of power consumption
7. number of emergency procedures simulated
8. cooling required to run the simulator

Cost factors increase dramatically as the aircraft being simulated becomes more complex and as a

result, an operational simulator may cost in excess of forty million dollars (Stytz; Rolfe and

Staples). The expense and space required for the traditional simulator limits its availability for

training pilots.

As actual flight hours grow less accessible because of the cost incurred or unavailability of

an aircraft, the need for more cost effective and readily available simulators has become clear.

Advances in virtual environment technology have created realistic flight simulators that take a

fraction of the space old simulators required and cost a hundredth of the price of a dome simulator.

The cost savings stems from using relatively low cost, high resolution displays controlled by a

computer graphics workstation (Switzer).

1.4 Problem Statement

AFIT has pursued research in virtual environments since 1988. In particular, the Advance

Research Project Agency (ARPA) has sponsored the AFIT VC that has investigated the feasibility

of a low cost, combined arms force, distributed network cockpit simulator. This thesis addresses

two problems: 1) to increase the realism of the VC and 2) expand the pilot's potential command

interface in the virtual environment. The first problem entails developing a photo-realistic cockpit

with working and relatively functional dials, switches, and circuit breakers. The second problem

requires adapting techniques used to input commands into a VR environment with the photo-

realistic controls within the VC.

1.5 Scope

This research addresses the following objectives: 1) realistically depict the F-15E forward

crew station (Figure 1-2) using polygonal objects and texture maps, 2) demonstrate a high quality

pilot immersive interface which allows the pilot to interact with the instrumentation, and

3) accomplish the former while maintaining at least a 15 Hz frame rate - the minimum rate needed

for a smooth interactive simulation.

l. Mam insmiiTwm Pin«

2. lilt SuDoam ■3. Rtyflt SuDWirt

Figure 1-2. F-15E Forward Crew Station (Aeronautical).

Realistic Depiction. In order for the VC to provide an effective training environment, the

VC simulation must create a sense of reality. Two factors contributing to the realistic feel of the

simulation arc the accuracy of the objects depicted and the frame rate of the simulation. Accuracy

refers to the amount of detail represented in the object. The more detail present, the more realistic

the rendered object appears. Equally important, frame rate is the number of scenes displayed on

screen per second. A high frame rate is desirable because it results in a smooth simulation.

However, these two factors can work against each other in simulations. For a modern graphics

system to render motion in a believable fashion, it must fully present all the polygons of every

object on the screen before the next frame is depicted. Otherwise, the resulting simulation appears

sluggish and hesitant as seen in a slow motion film. As simulations become more realistic, the

complexity of the objects in the scene can quickly overwhelm the graphical display equipment

(DeHaemer and others).

!

•
■annnaiir«

W/t^^MfBStjiffL^^WbjjjIMl^mi I
Figure 1-3. 1993 VC Main Instrument Panel.

Depicting a photo-realistic VC requires a combination of polygonal objects and texture

mapping techniques. The polygonal objects will form the VC's instruments, consoles, switches,

and knobs and will be modeled and edited to reduce the number of polygons used. Individually,

simple models can not capture the realism desired. Although the polygonal objects can be moved

and are three dimensional constructs, they can appear flat and cartoonish as Figure 1-3 shows. On

the other hand, texture maps can capture a photograph's realism, but can not be manipulated.

Figure 1-4, the photograph of an F-15E front instrument panel could be used as a texture map

(DeHaemer and others; McCarty). Figure 1-4 also displays many moving switches and dials

which need to be manipulated to provide realism. The VC will use the complementary features of

texture maps and polygonal objects to create a photo-realistic environment.

Figure 1-4. Photograph of F-15E Simulator Main Instrument Panel.

Immersive Interface. Providing an intuitive VC interface will require a conceptually

simple and easy to leam method for the pilot to interact with his surroundings. The primary

method examined in this paper is a head mounted display (HMD) used in combination with a

mouse interface based on the AFIT Information Pod developed by Kestermann. The mouse

interface has several advantages over other input interfaces which make the mouse a practical

selection. First, the mouse is easy to use. The mouse's point-and-click are easily mastered by most

people familiar with home computers. Second, the mouse does not require very much

memorization. For example, for a keyboard interface, the user must memorize the sequence of key

strokes needed to accomplish an action. Also, the mouse is a more mature technology than the

three-dimensional interfaces available. Compared to the mouse, three dimensional devices such as

the spaceball and DataGlove exhibit control and/or jitter problems that the mouse does not have.

Finally, the mouse is readily available and does not require special setup or calibration unlike the

DataGlove or the spaceball (Kestermann).

Frame Rate. The frame rate is directly related to the level of detail, i.e. the number of

polygonal objects needed to depict an image. The more polygons needed in the model, the slower

the frame rate will be. Because texture maps use fast memory operations rather than complex

computations, complex looking objects are rendered relatively quickly (McCarty). However, even

for powerful workstations, complex simulations can stress the machine's abilities. The AFIT

Graphics Laboratory's Silicon Graphics Iris 4D workstations can render texture maps in real-time.

However, the frame rate of inherently complex interactive simulations visibly slows when detailed

texture maps are used. Because the VC's frame rate usually runs between 13 Hz and 16 Hz

(Erichsen), the VC must be carefully adapted to achieve the photo-realistic level of detail without

losing the frame rate continuity during the simulation.

1.6 Performer and ObjectSim

Performer. IRIS Performer is an application development environment designed to

interface efficiently with the SGI graphics rendering hardware. Performer's main components are

two ANSI C object code libraries and their corresponding header files. The first library {libpr) is

a low level library which optimizes rendering functions, state controls, and other fundamental IRIX

operating system and IRIS Graphics library functions needed for real-time graphics. Because libpr

contains machine-specific elements to support particular workstation models, visual applications

using Performer libraries are portable across Silicon Graphics platforms. The other library (libpf)

is the visual simulation development environment that facilitates the multiprocessing, database

traversal and rendering systems by efficient use of libpr library functions. Although libpf is

layered on top of libpr, both libraries are easily accessible to a simulation application.

Additionally, when using Performer, a visual application also has access to the IRIX operating

system and IRIS Graphics Library on which Performer is layered (McLendon).

ObjectSim. ObjectSim uses the Performer interface to split the application, draw, and cull

operations of the VC simultaneously across the SGI processors. As a result, the VC processes are

synchronized so that no single process outpaces another and the simulation's frame rate runs

smoothly. ObjectSim serves as the connection between the simulation and the outside network. To

allow the visualization of the network traffic, ObjectSim correlates information from objects

broadcasting over the network with the models available on the SGIs. An object that broadcasts

information over the network is called a "player" in the ObjectSim application.

1.7 Virtual Cockpit

The 1993 AFIT VC is a very capable virtual flight simulator. The VC has the following

features : 1) sensor suite, 2) weapons systems, 3) DIS compatibility, and 4) realistic flight

dynamics (Erichsen; Gerhard; Sheasby). These features provide the fundamental set of tools

required for the VC to participate in a combined force network simulation. In fact, the 1993 VC

successfully participated in ARPA-sponsored WARBREAKER exercises (Erichsen). With

relatively minor changes such as updating engine, flight dynamics, and fuel flow routines, the VC

can take part as a player in a realistic network simulation. However, to provide a valuable pilot

training environment, the 1993 VC still requires additional work which includes the photo-realistic

displays and controls resulting from this thesis.

10

1.8 Methodology

The original object-oriented approach to the AFIT VC was established for ease of

maintenance and modification (Rumbaugh and others). Each year since the research started in

1988, the object-oriented design has facilitated expanding the VC's capabilities. This thesis will

continue with the incremental approach to modifying the VC.

The photo-realistic cockpit requires completion of two sub-goals: 1) generating the

photograph quality image and 2) ensuring the dials, switches, and circuit breakers behave

correctly. An incremental process is used to address the previously stated sub-goals. Each

functional component such as the landing gear panel of the cockpit is modeled before beginning

work on the next component. Finally, the simulation is modified when the models are completed.

Model Creation. The first imaging steps are creating a scale model of the control panels

followed by mapping the location of each dynamic element on the panels. To complete the image,

texture maps of essential non-moving parts of the panels, such as dial faces and labels, are

generated. Finally, the panels are completed by applying the moving elements to their

corresponding locations. MultiGen Flight, a version of MultiGen that supports Software Systems'

Flight database format, is used to create the photo-realistic static and dynamic models (Software).

MultiGen, an interactive tool for creating and editing visual databases, has been

implemented in a number of visual systems. Each implementation contains a Database Logic

(DBL), a common user interface plus the software subsystems needed to support a specific visual

platform. A MultiGen database is a file describing the visual scene. Usually, a single database file

represents the terrain and static models, and each moving object is placed in a separate file. The

VC, however, is a complex construction which includes multiple files as children.

In the VC model's hierarchy, the static and dynamic parts of the F-15E are the children of

the airframe (Figure 1-5). Because the airframe is a dynamic model moving through the virtual

environment and containing moving and non-moving parts, its parts are, in effect, dynamic in

relation to the virtual environment. The VC's structure has a modular hierarchy - containing

multiple static and dynamic files - in line with the modular coding techniques that will be used.

11

ObjectSim

VC
Application

Airplane

nthpr

Parts

INS
Main

Instrument
Panel

Left
Console

Right
Console

Figure 1-5. VC Hierarchy.
The parent node, the airframe, has multiple static and dynamic children. The main instrument panel and

the left and right consoles are static models and are children of the airframe.

Model Reaction. After creating the images, switches, and circuit breakers are

incorporated into the code as dynamic components. The first step in this portion requires

modifying an existing panel, such as the landing gear panel visible in Figure 1-2, to react to the

user's "touch". To accomplish this, the mouse input method developed in the AFIT Information

Pod (Kestermann) is adapted for transmitting the pilot's touch.

One of the resulting actions from any pilot input is to 'move' the switch the pilot has

pushed. Once the move has been shown, any number of resulting actions can also be depicted. For

example, if the landing gear knob (Figure 1-6) is lowered, the resulting actions would include

lowering a landing gear model and adding more drag to the aircraft's drag coefficient.

At each point in the research process where the new elements are fused to the VC, the

system's code will be recompiled and tested. The object-oriented coding practices in place will

simplify measurement of the VC's frame rate, the main barometer for success.

12

Figure 1-6. 1994 VC Landing Gear Knob.

1.9 Constraint

The major constraint on this research is the aging hardware. The years of VC research

have taken a toll on the hardware support tools. The aging Thrust Master WCS Stick, Throttle,

and connector cables often need coaxing prior to running the VC. Presently, only one of the five

throttles in stock is working. The AFIT Graphics Laboratory's two Silicon Graphics Reality

Engines are not useful if the VC support tools are in disrepair. Additionally, one of the Reality

Engines has only two processors compared to four processors on the other computer. The two

processor machine can not maintain an acceptable frame rate with the features designed into the

1993 VC. Thus, the validation of the 1994 VC must be on the four processor machine.

13

1.10 Thesis Overview

Chapter II presents an overview of virtual environments and user interface enhancements.

Chapter III recounts the requirements and motivation used to assemble the VC. A description of

the methodology follows in Chapter IV. The last chapter deals with results of the study and

discusses suggestions for future research.

14

II. Literature Review

2.1 Overview

The Photo-Realistic AFIT Virtual Cockpit (VC) is a virtual reality tool designed as an

interactive graphical aircraft simulator. This chapter reviews the literature concerning virtual

environments, distributed simulation, VR interface technologies, and the AFIT Information Pod

which apply to the VC.

2.2 Virtual Environments

Virtual environments have greatly improved since Ivan Sutherland proposed the concept of

a multi-sense user display called the "Ultimate Display" in a 1965 paper to the International

Federation of Information Processing Societies (Sutherland). This section presents recent

applications that represent the "state of the art" in virtual reality and insight on the direction of

future work.

Applications. Virtual worlds have been used in scientific data visualization, information

control, simulation, and other applications (Aukstakalnis and Blatner; Bryson; Bryson and Levit;

Zelter and Drucker; Erichsen; Cooke and others). The various applications, although having

different purposes, have an overlapping common objective which is to simplify the user's

interaction with the computer. The two key aspects of VR that researchers are examining are

vision and intuitive user interaction. Vision has been emphasized because it is considered the most

effective method for presenting large amounts of information with precision. Providing large

amounts of information through visual representations is also used for making complex dynamic

problems intuitive. By allowing a user to "physically" manipulate the visual presentation, the

complex dynamics involved are reduced to relatively simple user commands or movements (Ling).

Scientific Visualization. Steve Bryson of NASA Ames Research Center describes a

virtual windtunnel he developed to present the three-dimensional fluid flow dynamics of pre-

15

computed (on supercomputers) calculations. Within the virtual environment, researchers are able

to 'grab' the seedpoints controlling the visualized flow fields. By moving a group of seedpoints

around, the researcher is able to identify the interesting areas of the fluid dynamics problems

without worrying about the details of the interface (Bryson; Bryson and Levit).

Information Control. A VR planning application differs from a scientific visualization

application in purpose and technique. Rather than recreating theoretical, hard to visualize

calculations and dynamics, the planning application attempts to simplify great quantities of a

dynamic real world situation by presenting the information more concretely through a graphics

display. A dynamic planning heuristic also works on the data to provide suggested solutions to the

planning personnel. For example, the purposes of a computer-based VR mission planning

application are to optimize air assets, maximize the probability of success, determine mission data,

weapons loads, schedules, and avionics packages. In addition, the VR planning application

provides a tool crew rehearsal. Like the scientific visualization system, the mission planning

application is designed to be as transparent as possible, requiring a minimum of computer expertise

and programming skill (Zelter and Drucker).

Flight Simulators. Unlike the planning application and scientific visualization tool, the VR

flight simulators do not provide the user/pilot with a means of controlling the environment. The

purpose of a VR flight simulator is to provide the pilot with a realistic, responsive, and

unpredictable simulation. Producing realistic flight dynamics and providing for human opponents

via a networked interactive simulation is a recent approach to achieving a high quality and

combined force flight simulation. Like the other systems, the pilot's interface with the distributed

virtual environment is as transparent as possible (Erichsen; Cooke and others).

2.3 Distributed Simulation

Distributed interactive simulation (DIS) is one of seven critical technologies identified by

the pentagon several years ago to receive high-level attention and funding. The goal of DIS is to

create a sophisticated VR with capabilities far exceeding those of any single facility. To

16

accomplish this goal, the Defense Simulation Internet (DSI) is being developed as a world-wide

integrated network for global simulation (DIS, Stytz and others; Institute).

According to Bess, the key networking concept stipulates that all players on the network

perceive the same events. All network players must have intervisibility, see the same atmospheric

and illumination conditions, and use realistic sensor simulations in order to achieve a meaningful

simulation. For example, if only one player can see flares, then the value of the networked tactical

training is lost (Bess). Similarly, if players behave unrealistically, the simulation's value is also

lost. The tactical training nature of simulation influences the application as follows: (Bess)

1. Preserve intervisibility

2. Own vehicle freedom of movement

3. Natural vehicle dynamics

4. Able to take part in extended scenarios

5. Full use of crew positions

6. Full sensors, sight, and view points

7. Full use of all weapons

8. Complex area content or density

9. Dynamic database changes

10. Unpredictable dynamic scene content

The several distributed virtual environment applications being developed at AFIT are

influenced to a limited extent as described by Bess. The Satellite Modeler (SM) and Synthetic

BattleBridge (SBB) rely on the AFIT Information Pod (discussed below) to move through and

interact with the VR environment (Vanderburgh; Rohrer; Kestermann). Because the SM and SBB

user's move within the VR as non-player observers, the first seven influences above do not affect

the SM and SBB applications. However, because the satellites controlled by the SM's user are

network players, the Bess' influences do apply to the satellites. As a network player, the VC is also

affected by the factors listed above.

17

2.4 Virtual Reality Interfaces

The modern-day technological explosion has extended the potential of computers to expand

human information management. However, the interface employed largely affects the degree to

which computers can be used as tools (Furness and Dean). Work centered on putting the user

within the VR has emphasized technologies such as the head mounted display (HMD), data gloves,

and position trackers. Butterworth, and others have integrated an HMD and data glove in an

effort to provide a more intuitive computer aided design (CAD) modeling interface. According to

Butterworth, "even a novice user can understand how to manipulate a model by reaching out and

grasping" (Butterworth and others). For three dimensional interaction, an evaluation of several

input devices concluded that multi-dimensional devices like the data glove and the Spaceball were

easier and faster to use than the two dimensional devices (Venolia). VR systems focus on stimuli

for the visual sense and provide some method to navigate within the system. More progress

towards the Ultimate System is possible with tactile feedback devices in the prototype stage

(Astheimer and others). Research advances in multi-dimensional interaction are still in their

infancy, just having begun the same development process as was applied to the two-dimensional

interface ten years ago (Figueiredo and others).

2.5 AFIT Information Pod

The AFIT Information Pod is a paradigm originally developed as an interface for AFIT's

SBB and SM applications. The Pod is composed of two interfaces: 1) a window-on-the-world

view that assumes the presence of a CRT and a mouse and 2) an immersive interface designed to

support user interaction when the user's view is restricted to the virtual environment. The

immersive interface assumes the user will use an HMD or a large screen surround display as well

as input devices such as the a DataGlove™, 3D mouse, 2D mouse, spaceball, or BioMuse™

controller (Stytz and others). The AFIT Information Pod provides an application independent tool

for communicating with and/or gathering information from the players in the VR environment.

18

The Pod consists of one or more three dimensional control panels located around the user's

view point in the virtual environment. The number of panels depend on the application. For

example, the SBB, a distributed virtual environment platform that allows users to monitor and

assess the activities within the virtual battle space, uses five control panels. The SM uses three

panels to accurately portray satellite and planetary motion. Tailored to the application, each

control panel is separated by function (Kestermann). The three panels within the SM allow the

user to move the view to any point in the environment; to attach to a moon, planet, or a satellite;

and to toggle the visual display options (Vanderburgh).

Each of the AFIT Information Pod's panels may contain one or more sub-panels. Sub-

panels are inactive and invisible panels which are "stacked underneath" the primary panels

(Kestermann). These sub-panels become active when the conditions set in the application are met.

For example, the SM sub-panel for controlling satellites become active when the user attaches the

SM's Pod to a satellite (Vanderburgh). The user inputs commands into a panel through the buttons

on the panel's surface.

Buttons allow the user to interact with the environment, to request information, and send

commands into the VR. Although other methods of movement are examined, the varied degrees of

motion required by the two SBB and SM are achieved by the button paradigm. Of the other

options examined, Kestermann states: (Kestermann)

"Unlike the haptic or voice control paradigms, there is no need to memorize a list of

commands such as specific hand gestures or voice commands. The spaceball and

joystick, although considered by many to be intuitive and easy to use, do not support all

the degrees of movement required by the pod."

For activating panel buttons, Kestermann uses a mouse. The mouse provides a familiar

and well developed interface. The data glove is intuitive in concept, but jitter due to interference,

tracking inefficiencies, and implementation difficulties make the glove impractical as one of the

Pod's interface devices (Kestermann).

19

2.6 Conclusion

The VR applications described in this chapter indicate the many possible directions future

VR simulations may take. For example, a tool like the AFIT Information Pod can create a rippling

effect across a wide field of VR research. DIS technology presents the potential to expand VR

applications by allowing large scale realistic simulation. To interact within these VR environments,

researchers have concentrated on multi-dimensional input devices to compliment display tools such

as the HMD. Until the interface technology becomes fully mature, however, methods for filling the

gaps in the multi-dimensional technology will be used just as was done for two-dimensional

technology during its development (Figueiredo and others). The AFIT Information Pod uses a 2D

mouse input device because the 3D devices available are inadequate for the applications.

20

Ill Requirements and Motivation

3.1 Overview

This chapter details the goals, requirements, and motivation of the VC's photo-realistic

virtual environment. In particular, the VC's models, Head Mounted Display (HMD) and CRT

interfaces, and mouse and keyboard interfaces are discussed.

3.2 Detailed Photo-Realistic Models

The modeling goal for the photo-realistic VC is the complete recreation of the forward

crew station of the F-15E in the virtual environment. The sub-goals for the model are modularity

and accuracy.

A modularly structured cockpit model for the photo-realistic forward crew station reflects

a hierarchy similar to the systematic arrangement of the cockpit control surfaces found in an

F-15E (Aeronautical). The F-15E's forward crew station has three large structures: 1) main

instrumentation panel, 2) left console, and 3) right console. Each structure listed contains

functionally separated sub-structures such as the warning lights, the multipurpose displays, the

dials, and the control panels. By generating models at the sub-structure level, future changes, such

as the environmental control panel modification, to the F-15E can be incorporated into the VC by

replacing complete models.

The VC's panels will take advantage of redundant parts to simplify the modeling process.

Many of the switches and knobs in the F-15E are identical and need only be modeled once. For

example, the sensor panel on the forward station's left console has three toggle switches and four

knobs. In all, the left console's panels have more than thirty switches and knobs, including those on

the sensor panel. Thus, one copy of a toggle switch can be used four times on the sensor panel,

five more on the rest of the left console, and many more times on the right console and forward

instrument panel.

21

MultiGen will be used to generate the models in a modular hierarchy. At the top level of

the hierarchy is the complete forward crew station - the left console, the right console, and the main

instrument panel models (Figure 3-la & b). Each of the crew station's components is divided into

its sub-components such as the sensor and air regulator panels. These sub-components arc the

fundamental levels at which a forward crew station will be constructed. Incorporating modularity

into the models will allow real world design changes in the F-15E to be dropped into the VC.

Figure 3-la. VC Left Console Hierarchy.
The "consols" group is the parent node to the Iftcons group. The left console's panels are divided

according to function.

Figure 3-lb. VC Right Console Hierarchy.
Similar to the left side's structure, the panels models are divided according to function. Note: the "others"

node on the right refers to the instrument panel's parts, such as the warning lights.

Like modularity, generating accurate models is also a sensible goal. The level of accuracy

necessary to adequately model the interior is dependent on the simulation's purpose and the

processing power of the computer running the simulation. For the VC, the photo-realistic virtual

environment requires the most detailed models the hardware can support. If the VC had no other

requirements, a highly realistic model could use tens-of-thousands of polygons to recreate the

22

forward crew station. However, the model detail is in direct competition with other traditional

drivers of flight simulator and VR technology. Traditional drivers the VC must also satisfy

include: 1) mathematics involved with simulating the physics of flight, 2) collision resolution

techniques used to interact with other entities in the virtual environment, 3) complexity of the

environment (outside the cockpit), 4) human factors and interface design issues, 5) VR players, and

6) network interaction requirements. Figure 3-2 depicts 3 balls of varied levels of complexity.

Table 3.1 depicts the frame rate impact of adding each ball in the VC simulation.

A. 2000 Polygons B. 18000 Polygons C. 180 Polygons
Figure 3-2. Three Balls.

Ball A is rounded, yet the shadows highlight some edges on the surface. Ball B has a round shape and a
soft realistic shadow. Ball C has a pointy silhouette and distinct highlights on its surface.

Table 3.1 Bal 1 Complexity and "rame Rate Impact
Ball A BallB BallC No Ball

Polygon Count 2000 18000 180 0
Frame Rate (Hz) 12.5 9.5 15.6 15.0
Net Impact -16.7% -36.7% +3.3% 0%

The numbers shown in Table 3.1 are highly dependent on the scene being displayed. For example,

Balls A and B have less impact on a more complex scene. In the case above, inserting Ball C into

the VC improves the performance because the ball is less detailed than the instrumentation it

23

blocks. Table 3.1 also illuminates the conflict between a model's complexity/realism and its

processing impact. Consequently, the VC's models must look realistic and, yet, be simply

constructed to avoid disrupting the simulation's frame rate - a pair of contradictory goals.

Fortunately, the pilot's interface into the virtual environment can make up for some of the modeling

short-cuts used as will be discussed in Section 3.3.

3.3 Head Mounted Display and CRT Interfaces

The photo-realistic VC will include both a head mounted display and a CRT view - a

window's eye view - of the virtual environment. Both interface types have been demonstrated in

previous versions of the VC. However, in this implementation, the purpose of each interface will

be separated.

The photo-realistic VC's interface sub-goal, to provide an HMD interface as the pilot's

primary view into the virtual environment, has two objectives: 1) improve the simulation's flight

characteristics and 2) simplify interaction with model controls. Improving flight characteristics

refers to the pilot's quality of flight and situational awareness. For instance, by using an HMD the

pilot is able to 'look ahead' as he/she turns the aircraft or to keep another aircraft in sight longer

during a fly by. This first objective has been demonstrated in the previous VC 2.0 (Erichsen). The

second objective, to simplify the interaction with the photo-realistic control systems in the VC, will

be demonstrated in the photo-realistic cockpit by the enhanced perception of three-dimensions due

to parallax (Zeltzer and Drucker).

As a complement and a contrast to the HMD interface, a window's eye view will also be

used in the VC. The CRT has long been the standard viewing device for VC similar to the familiar

view in countless video game flight simulators. In addition, the CRT allows useful features such

as simplicity of display and a non-restrictive viewing device. Using the window view and the

HMD view into the VC will demonstrate the functionally complementary features of each interface.

The HMD and window's eye view interfaces differ from each other with respect to the type

of freedom each allows. A pilot in an immersive, fully functional, photo-realistic environment

24

benefits from the freedom of view an HMD provides within the virtual world. While the window

view restricts the free movement of the user's view, the window view into the VC provides freedom

of movement in the real world. Two possible uses for a window view are as an over-the-shoulder

view for an instructor or for an exercise monitor.

3.4 Mouse and Keyboard Interfaces

The photo-realistic VC also includes methods for users to interact with the knobs and

switches modeled in the virtual environment. The 1994 VC uses both a mouse and a keyboard

interface.

The mouse interface is the method a pilot uses to select the switches and knobs in the VC's

forward crew station. The mouse offers practical and human factors advantages over the data

glove and the keyboard interfaces available in the AFIT Graphics Laboratory. From a practical

perspective, the mouse is a common interface available on home computers and work stations; its

movements and uses are well understood. Also, the mouse hardware is reliable, seldom requiring

maintenance other than cleaning. From a human factors perspective, the mouse requires less

concentration than the data glove to maneuver over the flat surfaces depicted in photo-realistic VC.

Although, Butterworth and others assert that the glove is superior to the mouse, the latter has two

advantages over the DataGlove for this specific application. First, the mouse is a more mature

input device which has enjoyed widespread use since the early 1980s (Figueiredo and others).

Second, by limiting the button selection to two dimensions within the virtual environment (i.e. the

surface of a console) the problem of selecting a button becomes tailor made for the mouse. As the

glove matures, advances such as tactile feedback (Astheimer and others) should facilitate a three-

dimensional approach to the button selection problem. The mouse is easier to use with the HMD

versus the keyboard. Commands are easily executed by pointing and clicking because the mouse

cursor remains in the user's field of vision. On the other hand, if the user is wearing an HMD, the

keyboard is blocked from view. Consequently, the user must search for the correct keys to issue a

command.

25

In the VC, the purpose of the mouse interface differs from that of the keyboard interface.

While the mouse provides a means for the user to interact with the virtual cockpit, the keyboard

offers controls which affect simulation features. The separation between functions also highlights

the operational use envisioned for the VC, for example, a pilot wearing an HMD will fly the VC

and a controller or instructor can oversee the simulation from a workstation.

3.5 Conclusion

The photo-realistic VC research centers on increased realism and control for a pilot user.

The models re-create the forward crew station, the HMD provides an eye into the cockpit, and the

mouse provides a hand for the pilot to interact with the environment he/she sees. The methods used

to generate the environment will be detailed in the next chapter.

26

IV. Design and Methodology

4.1 Overview

The overall design objective for the 1994 VC is to provide a more realistic simulator

environment on a relatively low cost machine while retaining the previous version's large force,

DIS network compatibility. To achieve the VC's major objective, elaborate models of the interior

of the cockpit need to be constructed. Once the models are finalized, a method for communicating

the pilot's commands will be integrated along with the capability to translate the pilot's commands

into corresponding actions. This chapter details the model construction and simulation interface

design of the improved VC.

4.2 Model Baseline

The first step prior to the VC's cockpit model construction is to establish a baseline

configuration. The baseline, to provide the data needed for a realistic final product, should meet

the following criteria:

1. Based on F-15E instrumentation

2. Provides dimensions of equipment

3. Provides information on cockpit ergonomics

4. Provides functional information of controls

5. Provides available color and text information

Three sources, the F-15E Human Factors Documentation (Aeronautical), two photographs

(Figure 1-4; 4-1), and panel measurement made at the Human Factors Laboratory (Kriss and

Kubiak), will be used as the baseline. The F-15E Human Factors Documentation contains the

1988 F-15E configuration, ergonomics, and functional data (Aeronautical); the photographs

provide color information; and the panel measurements will allow the models to be drawn to scale.

27

Figure 4-1. Photograph of F-15E Simulator Front and Rear Crew Stations Multipurpose Displays.

After the baseline is selected, the next steps are the construction of polygonal

representations, applying texture maps, and placing the models within the VC's F-15 MultiGen

model. The following section describes the model construction and how the advanced modeling

tool, MultiGen, was used.

4.3 Model Construction

Scale. Having the correct three dimensional measurements for all the equipment is needed

to make models that "look" right. While the schematics (Figures 4-2, 4-3, 4-4) and the

photographs provide a clue about relative size of panels, none of them include any measurements.

However, a scaled model can be generated with the relative information in the baseline

28

documentation and with measurements for one or two panels. Fortunately, the Human Factors

Laboratory's F-16 cockpit mock-up has two pieces of hardware, the clock dial and the air regulator

panel, that are identical to the F-15E based on the schematics available. According to Kriss and

Kubiak, the Human Factors Laboratory uses a similar approach to constructing cockpit mock-ups

when the dimensions are not available (Kriss and Kubiak). In addition to the panel measurements,

the Human Factors Laboratory also has a stock room with the switches used on the Air Force jets.

With this information, scaled models of the forward components can be built and inserted into the

F-15E model utilized by the VC (Figure 4-5).

UMmj Gar Hatten
ma Rum Sand Swnen and indoor
warning Tot» Sim» StUct Sana

I Uiang Gar taaJon Ugms
AmmiMR Contra Ptnai
»ngnhoHUOx« uncaar

Emergac» Jausen San Santa

sunny AramM iMkanr

SOnar «ittnr

Pin Warnttg/ExBiigusning Comm PI

Monuutunia. Mmttoraa tttatr

uoooinopj caor Oonay
Maar lioga Sakct Swnm

Hag Uo Obarf Control Pirnl

Ugn.

20."LorJc/Snont Cam Ugna

21. Air Bthning tear Ugn
22. dart Ugn

23. SBnow Canons K^Caan Praam «Mr
24. Had Uo CaatT Cormr 3Sä Enant uonanr Ojoay

25. Hod Uo Otalay caoan Parnooi JS.'Jtt.FaistararHanan)
25. Waning Ligu Pan* 3T. Hooka Bran Sana Sana*
27. Uo-fftm Contra 3L RkjatConmsidtSno
28. AtMsoryUgl* Paal a; Ian Oral BnurPiM
29. Utm» Hrorauie Praam Mnoaor 40. ECS Varoon Obeargi uxmr
30. Prtrnar» Hydrate Praasan Inokaarai. ItlgM Caul Srakar Pant*
31. Had Irantmr Moon* Rnantc» 42. Too arena Bnaar PtM
32. Analog dock 43. Enargaqr Brant Staring Comm
33. Funl Quantity inoaar 44. rtoooar Paal Adjranmm Contra

Figure 4-2. F-15E Main Forward Instrument Panel Schematic.

29

51 _ Ground Powsr SelecfSwiteh
52^ Ground Powar. Control Panel
53^Armamwrt Safety Select Switch

'54.» Blank
55~ Emergency Air Refueling Select Switch
56i Identification Friend or Fee

Control Panel
57: Electronic Warfare Warning System

Enable Switch
58J;Radio Control Panel
59JJ Identification Friend or Fee Antenna

Select Switch
60«Misceüaneous Control
61. Volume Control Panel
62i SeaLHeight Adjust Switch
63^. Ftyup Enable Switch
64. Non-Cooperative Target

Recognition Switch -
65» Velocity Maximum (VMAX)Switcn .
66i Fuel Control Panel
67. MisceHaneous Control Panel
685 Control Augmentation System

Control Panel
69^; Nuclear Consent Select Switch
70. Right Throttle Control
71 .'Left Throne Control
72. Exterior Light Control Panel
73. Sensor Control Panel
74. Anti-g Panel

51'

Figure 4-3. F-15E Left Console Schematic.

30

75. Storage Provisions
76. Communication Cable Connector
77. Oxygen Hose Connector
78. Compass Control Panel
79. Video Tape Recorder Control Panel
80. Engine Control Panel
81. Oxygen Regulator Control Panel
82. Environmental Control System Control Panel
83. Anti-Ice Control Panel
84. Air Conditioning Control Panel
85. Interior Lights Control Panel
86. Utility Light

Figure 4-4. F-15E Right Console Schematic.

31

Figure 4-5. F-15E model used in the VC is a MultiGen Flight model.

Modeling. This research employs three approaches to generate the photo-realistic VC

models. The first approach use a texture map of each complete panel to create the photo-realistic

models. The first approach and why it fails will be dealt with in the next section. A discussion

follows on the second approach, building models within the F-15E model file, and the third

approach, building models independent of other model files.

The second approach, building models within the F-15E model file and using limited

texture maps, appears attractive because the photo-realistic models would be drawn to scale and in

place with respect to the F-15E model's origin. However, this approach proves to be

unmanageable because 1) F-15E model is too complex and 2) MultiGen grid spacing restricts the

minimum size of the photo-realistic models.

32

Center x:

z:

Size x:
y:
z:

0.250m
0.000m

-1.450m

f9.500m
/2.920m
4.620m

Figure 4-6. MultiGen Flight Scene Statistics Display (Software Systems) for the F-15E Model.
The statistics table provides a measure of the models complexity. This model is made up of 28 Groups
and 108 Objects. More important statistics when considering the rendering speed of a simulation is the

number of Faces (polygons), 1797, and the number of Vertices. 6274. Note: Although this model are
complex, the 3.49:1 ratio of vertices to polygons means that the modeler attempted to keep faces as simple

as possible. This will simplify the model in preparation for the rendering application.

The F-15E model's complexity. (Figure 4-6) is a problem because the Silicon Graphics 4D

which has MultiGen installed does not respond within a reasonable amount of time to simple

modeling commands. Changing the view point, for example, takes at least half a minute. The

incremental changes in view that MultiGen allows becomes unbearable because after each

increment, the computer would freeze until the model is refreshed. To understand the second

problem, the MultiGen grid must be explained.

33

The grid is a MultiGen feature that normally appears on either the XY, XZ, or YZ planes

and can be adjusted to any other orientation a modeler desires. Also, the grid spacing can be

initialized to inches, feet, meters, or kilometers depending on the size of the model being generated.

Once the spacing is set, the smallest units the grid displays is one hundredth the spacing setting.

For the VC's F-15E model, the grid spacing is set to a meter. This limit makes the generation of

simple models like the toggle switch nearly impossible because the grid's rninimum resolution was

greater than the width of the toggle switch. Fortunately, the unmanageable database and

incompatible units of measure problems reveal themselves early. Because this approach does not

prove promising, it is abandoned in favor of the third method, separately generating models.

In the third approach, by modeling the consoles separately, the problems encountered in

the second approach are avoided. Using the forward crew station diagrams, the left and right

consoles' footprints are mapped into a MultiGen space. The MultiGen tool's grid spacing is set to

one meter and a 1 meter = 1 inch conversion is made when modeling the consoles. The 1 meter = 1

inch scale allows the model's resolution to be one hundredth of an inch. For example, the Oxygen

Regulator Panel width, 5.25", is drawn as 5.25 meters in the modeling space. After each footprint

is established, the panels are cut out in cookie cutter fashion using MultiGen's polygon slicing

command. The cut panels are then copied into separate files. Once divided, model switches and

knobs are added to each panel's data base.

The instrumentation of the F-15E forward crew station is filled with dozens of different

shaped toggle switches and knobs. For example, the Engine Control Panel has four types of toggle

switches and the Sensor Control Panel (Figure 4-7) has four different shaped knobs. Among the

reasons cited for the difference in shapes is the tactile feedback each switch provides (Kriss and

Kubiak). The various shapes aid pilots by allowing them to feel for the switches and knobs they

need. Thus, the pilots can accomplish minor tasks while maintaining their look up time or

situational awareness.

34

<gf IT BOS
ON

0«
INS

now ALT

0».

"*°" Im

f
-cUCKG -f

o

STOBI AUGN »GAIN
of ^J-^ .ac-i. o LEVEL

PUU.
NAV '

NAV FUR

ÄL^
,,. "OLL Vv"0""

#1

ON E
/^\ N
raWwsrwr s
V) °
o»

cc
BESET

OH)

Figure 4-7. Schematic Diagrams of the Sensor Control Panel (left) and the Engine Control Panel (right).

In the VC's completely virtual environment, despite not having tactile feedback, modeling

the correct shapes remains important for providing visual cues. Many of the knobs in the cockpit,

while similarly shaped, differ in the texture of their surface; for example, some knobs are smooth

while others are ridged. Because modeling all of the knobs perfectly would greatly complicate the

models and the data base, only two types of knobs will be modeled in this version of the VC.

Although, this short cut will slightly detract from the final product, the size and shapes modeled

will be a reasonable representation of the actual knobs present.

Texture. The first approach to generating photo-realistic displays uses textures as a short

cut to avoid complex polygonal models. The short cut, however, is impractical for reasons

described below.

The short cut to generating a texture map attempts to create a texture file using a

photograph or schematic from the baseline documentation. At first, this approach is attractive for

the following reasons: 1) only a single polygon is needed, 2) the panels can be mapped to scale

based on the texture map, and 3) the correct positions of moving parts are also mapped onto the

polygon. This approach is later found to be impractical due to memory and resolution problems.

The first attempt to generate a memory map is from a photograph (Figure 1-4) using Macintosh

Adobe PhotoShop and a scanner. Potentially, a realistic texture can be taken from the picture.

However, the resolution and contrast of the pictures in the baseline are too poor to be well scanned.

35

Also, the sizes of the image files resulting from the generated texture files are well over a megabyte

each. An attempt is made to scan the panel schematics piecemeal and paste them on their

polygonal counterparts. This variation of the texture method does not work because the individual

panel bit maps uses too much memory, about 100 Kbytes per mapped panel. Additionally, most of

the areas being mapped arc the unnceded black areas between the words.

In order to reduce the bit map files and to improve the quality of the text on the panels,

new texture map files arc generated with text only. The texture map files are converted from

Macintosh Adobe PhotoShop GIF files to intensity (int) and rgb files which are compatible with

MultiGen; in most cases, a gray scaled intensity format is sufficient. The texture maps contain all

the texts on the consoles and main instrument panel (Figure 4-8). Words from the texture files are

individually applied to polygons and finally placed in their appropriate positions on the panels

(Figure 4-9).

uoz»-cl<zoael<to*-wflcujuo}^KOu.u. "•*
OXYGEN REGULATOR PRESURE DEMAND ROW EMERGENCY
NORMAL MASIUm ON OFF SUPPLY RESET REAOY AUTO
TEST ISOLATE EMOH3 GEN RCO EOT MIN REMAIN RECORD
ENABLE UNTHREAD FAST ERECT PUSH TO SYNC COMPDG STBY
SLAVED LAT 01 2 3 45 8 7 8 I SHF OXY BIT ANTI-FOG MAN
ANTHCE P1TOT ENG HEAT WINDSHIELD HOT COLD TEMP MAX
AIR BOTH CONSOLE INST PNL BRT CHART LT UFC DISPLAY
CONO STORM WARNING DAY NIGHT COMM LIQUID O, T P
127 ROOO CAUTION oo*a.«««»«>i-*iEi-u*ac W

I uixo —zujxt-oujac — ac»-uioc — oec "

Figure 4-8. Texture File Used for Right Console.
Note: the text is all one size, the size differences seen on the console are due to the size of the polygon the
text is mapped onto. A large polygon gives the appearance of greater font as can be seen in Figure 4-9.

36

OXYGEN REGÜLATO«
WGSURE DEMAND .,

£ME1*G'£MCY
MÖflMÄL

OXYGEN Q*

, SUPPlY

Figure 4-9. Oxygen Regulator Panel.
The polygonal construction is highlighted by the white dotted lines.

Note: Text is scaled to the polygon on which it is applied.

Completing the Model. To complete each console and the main instrumentation panel,

each of the component panels and instruments are completed individually. Once the individual

pieces are complete, the whole console is assembled (Figure 4-10). After both consoles are

accomplished, the crew station is scaled to the same proportions as the F-15E model used by the

VC and moved to the correct location within the model. The product at this point in the research is

a photo-realistic, non-interactive forward crew station. The next section details the methodology

for providing a user interaction with the crew station.

Figure 4-10. Completed Forward Crew Station Right Console

4.4 Switch Movement

The visible movement of switches in the simulation gives the pilots feedback to their input.

The position of the static models is defined by a static coordinate system (SCS) matrix. Once

defined, static models can not have their position or parts modified (Figure 4-11). After the static

photo-realistic models are placed in the VC simulation, the static switches are removed from the

models (Figure 4-12). Then, movable switch models are placed, using a dynamic coordinate

system (DCS) matrix to define their location in the simulation, where the static models were

removed (Figure 4-13). The DCS defined models can be moved by modifying the DCS matrix.

38

Figure 4-11. Static Model of Fire Warning / Extinguishing Control Panel.

Switch movement in the virtual environment is simulated by modifying a model's DCS

matrix then redrawing the model. A smooth motion may be displayed by projecting an incremental

series of discrete position changes. However, when modeling the movement of a switch, knob, or

light, only the new position (or status) holds any value for the pilot. Thus, the final position is

modeled rather than modeling the motion with a scries of position changes.

The position changes of each model are based on the type of model being toggled. Each of

the switches, knobs, and warning lights has a different type of movement. For instance, toggle

switches are rotated about the x-axis, perpendicular to the center line of the switch. Knobs rotate

about the z-axis, the center line of the knob. Warning lights turn off and on by translating the

textured polygon out of and into the pilot's field of view (Figure 4-14 and Figure 4-15).

39

Switches and knobs may have more than the two positions on and off. In the photo-

realistic VC, the range of motion for the various knobs and switches is simulated by toggling

through a case statement. The software keeps track of the knob's current position and of it's next

position.

Figure 4-12. Fire Warning / Extinguishing Control Panel without dynamic switches and lights.

40

LENGI^ER

HE3 /
Figure 4-13. Fire Warning / Extinguishing Control Panel with dynamic switches, lights, and cursor.
The red outline along the left hand side of the Main Instrument Panel indicates that this is the mouse-

active panel.

41

Figure 4-14. Fire Warning / Extinguishing Control Panel with toggling buttons displayed.

42

|i||gB

Figure 4-15. Landing Gear Panel with Knob Up .
The gear knob toggles from the up to down position. The gear lights are two sided polygons with green

background on the opposite side.

Figure 4-16. Landing Gear Panel with Knob Down.
The gear knob is shown in the down position and the lights are "lit"

with the black text on a green background texture file.

43

4.5 User Interface

The user interface modifications to the VC includes a mouse activated input interface and

an improved Head Mounted Display (HMD) interface. These interfaces, adapted from the AFIT

Information Pod, and the hands on throttle and stick (HOTAS) are the input and output suites the

pilot will use to interact with the

VC. The interface suites will be demonstrated at the 1994 Air Force Association (AFA)

Conference in Washington D.C.

Mouse Activated Interface. A mouse activated point-and-click interface installed for the

pilot's use allows for a flexible, easily modified method of selecting from the hundreds of switch

and knob positions possible on the controls. This is an improvement on the previous interface

which, until this year, has been the HOTAS. The HOTAS interface has buttons which the pilot

could use to control the sensor suites, the weapons load, and the landing gear. The 1994 VC will

retain the previous stick controls in addition to the mouse interface described below.

The mouse activated interface, based on the AFIT Information Pod (Kestermann) interface

for the Satellite Modeler (Vanderburgh) and the Synthetic Battle Bridge (Rohrer; Kestermann), is a

robust system adaptable to various input methods. The interface establishes invisible planar

surfaces, called mouse-panels, within the simulation (Figure 4-16). While a simulation may have

many mouse-panels, only one will be the active mouse-panel with a mouse cursor displayed on its

surface. Figures 4-13, 4-14, 4-16, and 4-17 show the mouse-cursor on its invisible mouse-panel

surface. Additionally, the mouse-panels will have one or more sub-panels. On the sub-panels are

the input-activated areas called buttons, visible in Figure 4-14 and Figure 4-19 on the Main

Instrument Panel warning lights. Whenever the mouse's left button is 'clicked' and the cursor is on

one of the button areas, that button is activated. Clicking the right mouse button activates the

simulation's mouse-panels in a cyclical order.

44

In the VC, the left and right consoles and the main instrumentation panel will each have a

mouse-panel just above its surface. The pseudo code for placing a mouse-panel and buttons is

shown in Figure 4-17. By co-locating the mouse-panel's button areas with the switches and knobs,

the VC's pilot can input commands by placing the mouse cursor over the switch/knob and 'clicking'

the left button.

Initialize Airplane () // Initialize starting state and sensor displays
Initialize Instrument Panel // Place all models on front console

Place the Static models on // Static models are static with respect to
main instrument panels the VC, not the virtual environment

Initialize starting state of dynamic // Starts the VC in a known state
models on main instrument panel

Place dynamic models on main // Place knobs, switches, and warning
instrument panel lights on main panel

Initialize Left and Right Panels // Identical in structure to Initialize Panel
Initialize mouse-panels (xyz, hpr // Defines 2D panels, the boundary area of the mouse

scale, high-light model)
Initialize sub-panels () // Defines position of toggle buttons on mouse-panel

Set Button Position (length, width i // for each button on panel, set the dimensions
xyz-position, colors, text) & position

Initialize Mouse // Initialize mouse
Add Panels // Pass location of each mouse-panel to

End Initialize routine.
mouse

Figure 4-17. Pseudo Code for Initializing Cockpit Models and Mouse-Panels.

45

1 L
IM* HUÜ. PITCH |

OM OM |

• • • 1
M C! NT-, m 1

^JL_ TIOTMII 1 ■ — ■ ■■

k^ c • ••

F *i NUCLEAR 1
1 -nun
1 uwir l^:::'' 'fPIStJB

1 COHFTANK >
X IT 1

X. C 1 k—i y ^v jcmtoH I

h^ / ^■■^Jij ■

Figure 4-18. Mouse Cursor on the Left Console Nuclear Panel.

Figure 4-19. Main Instrument Panel with toggle buttons visible over the warning lights.
The red outline across the top of the panel indicates this is the active mouse-panel. The mouse is visible

in the bottom left hand corner of the photograph.

46

HMD Update Routine
// Update position.

Read Fastrak (XYZ) Raw-position // Get raw data from Polhemus.
VC's(X) = Fastrak (X) / 50.0 // Adjust scale to VC's virtual environment.
VC's (Y) = Fastrak (Y) / 50.0 //
VC's (Z) = (-1) * Fastrak (Z) / 50.0 // The VR z-axis is pointing down

// Multiply by -1 to normalize movement.
View (XYZ) = VC's (XYZ) // Set view position within VR.

// Update heading(H), pitch (P), and roll (R).
Read Fastrak (HPR) // Get raw data from Polhemus.
VC's (H) = (-1) * Fastrak (H) // Multiply raw heading by (-1) to set view

// away from Polhemus; behind user.
VC's(P) = Fastrak (P) // Pitch and Roll in VC's VR is unchanged
VC's(R) = Fastrak (R) // from raw data.

//
// Set view hpr within VR. View (HPR) = VC's (HPR)

End HMD Update Routine
Figure 4-20. HMD Tracking Routine.

This routine tracks from behind the user.

The Head Mounted Display Interface. A new HMD interface replaces the previous

HMD. The new design provides a simple-to-use, immersive environment by modifying and

replacing most of the functionality of the old HMD interface. Like the old interface, the new HMD

will use a Polhemus 3-Space Fastrak mounted at the top of the skull to transmit the view angle and

view point to the simulation. Unlike the old interface, however, the new HMD is developed as the

primary viewing interface for the VC. In order for the HMD to be an acceptable interface, the

display must be smooth (no jitter), adjustable, and easily initiated.

To achieve a smooth HMD view, this year's design tracks from behind the head rather than

in front. The new tracking position results in a smoother HMD view of the virtual environment

because the Polhemus transmitter can be mounted closer to the receiver from a position behind the

user (Figure 4-20 and Figure 4-21).

An adjustable HMD interface is also an important part of the view interface. With the old

HMD, if a pilot was too far from the VC's instrument panel, the pilot needed to move forward by

adjusting her/his real world position. The new HMD provides the ability to "move" the pilot's seat

position within the virtual environment. As a result, the pilot's real world position becomes stable.

47

The change from movement in the real world to movement within the virtual world makes the

interface adaptable to the multitude of users who will fly the VC during the AFA convention.

Finally, the new HMD interface is installed at start-up automatically rather than as an option

selected at start-up. The simple initiation procedure is designed to encourage use of the HMD

interface by removing the start-up options.

Polhemus

MM)
-^ > 'III FASTRAK

-^ //iM : «IHM
—-^ iiiilpMM

«is \
\ r

Figure 4-21. The Polhemus and Fastrak.
The Polhemus is located above and behind the user.

The proximity of the Polhemus to the Fastrak helps reduce jitter.

4.6 Conclusion

This chapter described the design and implementation of functioning models and a new

interface within the photo-realistic VC. The model construction process produces realistic static

controls which can be combined to form aircraft components. The static component models are

'dropped' into the VC. Once in the VC, a standard series of steps is used to replace static models

with functioning models which use a DCS matrix. As the models become functional, an immersive

HMD view (used for locating and toggling switches) becomes more important.

The VC has two views into the virtual world, the HMD view and the window view. The

simulation interface serves to enhance the detail modeled forward crew station. When wearing the

48

HMD, VC pilots can readily look ahead into a maneuver or check the position of switches and

dials within the cockpit. On the other hand, with the VC in window mode, the simulator can be

flown like a standard computer simulation. Also, when flying in window mode, switch selection

becomes a non-practical series of key strokes and mouse movements difficult to master without

practice.

The mouse and keyboard interfaces are designed for use with both HMD and window

views. In the window view, the keyboard inputs are used to change the view - turning the virtual

head. In HMD mode, the keyboard functions allow the pilot's base view into the virtual world to

be altered (similar to adjusting her/his seat). Once the base view point is in place, however, the

keyboard is no longer needed.

49

V. Results and Recommendations

5.1 Overview

This chapter presents the results of the Photo-Realistic AFIT VC including: 1) modeling,

2) mouse interface, 3) button activated switch movement, and 4) HMD interface. In addition,

observations from the 1994 Air Force Association Convention (AFA) are delineated. Lastly,

recommendations for future research are outlined.

5.2 Results

Modeling. The forward crew station for an F-15E is constructed from schematics,

photographs, and sample components available at various organizations at Wright-Patterson AFB.

Using standard pieces such as the knobs and toggle switches, the various panels and displays

individually before fitting them together to form the consoles and to complete the main instrument

panel. The standard pieces are the largest contributors to the model's complexity. Of the 1648

polygons in both the left and right consoles, the knobs and toggle switches contribute about 85% of

the total polygonal count. The models and the schematic drawings on which they are based are

illustrated in Appendix A. Specific modeling details are presented in this chapter.

50

iVt ■

Figure 5-1. Close-up of 1994 VC Instrument Panel Dials.
The text used in these dials was generated by applying texture to polygons.

For example, the bitmap. KNOTS, is on one polygon.

1 % J feL
i

V 0 •

KVOTS
W »iwi 3*

/> 5 4% ♦' i
1 '

••*

9 v r

8 ALT 2

/ 5 **
1

1 ♦, 5 f 1 w- *
40 30

^ ANGLE OF *

-Ö 20-
4

" VYl 6- z^ ' 10 *
1

4 i *

Figure 5-2. Close-up of 1993 VC Instrument Panel Dials.
The text used in these dials was generated with MultiGen's polygons fonts.

Each letter or number consists of multiple polygons.

51

f>«ilRSiiiilii«i
~teL

*&
Ä%„, „.,

Figure 5-3. View of 1994 VC Instrument Panel.
The texture words and numbers remain distinctly visible.

Figure 5-4. 1993 VC Instrument Panel.
The polygonal text in the dials has blended with the background.

52

The 1994 VC uses texture maps to display most of the words on the main instrument panel

and consoles. Except for the dynamic readouts such as the velocity indicator on the Heads Up

Display (HUD) and the engine monitor display, all other text in the photo-realistic VC is modeled

with bitmaps (Figure 5-1). The bitmaps are more readable within the virtual environment than the

labels printed using MultiGen's polygonal text function (Figure 5-2). For example, the bitmapped

numbers on the clock in Figure 5-3 remain distinctly visible while the polygonal text in Figure 5-4

appears to vanish into the background. Interestingly, from a close-up view point, the clean lined

polygonal text is more readable than the blurred bitmapped text. As the view point moves away,

the blurred text retains its general shape and readability while the polygonal text fades away and

loses its distinctive shape. This phenomenon is due to the size of the polygons used in each text

method. The polygonal letters have polygons fitted together to create a letter. For example, the

number " 12," visible on the clock dial in Figure 5-4, uses thirteen differently shaped polygons

(Figure 5-5). The smallest of these polygons quickly falls below the resolution of the display as

;; ;*:*:*:*::::>>:*>:*:w^ ■:■

 w.-ivv.'X'A'i'Xox:*

Figure 5-5. Polygonal Text

53

the view point moves away. Thus, the smaller polygons seem to fade away as shown in Figure

5-4. On the other hand, the textured polygons are as large as the words. The word textures are

visible because the polygonal surfaces on which they are written remain larger than the resolution

of the display.

Mouse Interface. The mouse interface provides a useful tool for interacting with the VC.

The motion of the mouse's cursor is two dimensional and easy to follow along the surfaces in the

VC. The mouse is a good first cut at communicating commands into the virtual environment by

direct 'handling' of the objects within the environment. However, this interface is not a final

solution.

The mouse interface suffers from incompatibility with the HMD and from its head down

functionality. The mouse is incompatible with the HMD because the mouse device is not

stationary. While wearing the HMD, objects like the control stick and the throttle must remain

stationary to be easily found. Because the mouse is designed to move around, a user with an HMD

will fumble about time she/he needs to find the mouse. While a trackball can solve this problem, it

will not solve the second problem - head down operation. To use the mouse interface, the user

must find the cursor, move the cursor over the switch, and toggle the left mouse button. Although

these operations can be accomplished quickly, the user must be looking down at the switch she/he

is trying to toggle. While looking into the cockpit, the pilot loses all visual motion cues which help

him/her to control the aircraft. Even with much practice, I have often looked up from a switch to

find the VC in a spin, a steep climb, or a steep dive into the ground.

Button Activated Switch Movement. Switch movement occurs when the corresponding

button on the mouse-panel is activated. When a button is activated, a global flag is raised that

allows the model control function to modify the switch display.

The switch's range of motion is controlled by a case statement in the appropriate model

control function (i.e. models on the main instrument panel are controlled by the instrument.cc).

Figure 5-6 is the portion of the code that controls the landing gear knob and its associated lights.

Other models can also be controlled from this point if needed.

54

HMD Interface. The HMD interface greatly adds to the utility of the detailed three-

dimensional models. As the pilot wearing the HMD turns, the relative positions of the models

change due to parallax, an effect which enhances the perception of three dimensions (Zeltzer and

Drucker).

Another factor influencing the utility of the HMD is the quality of the display. The AFIT

Graphics Lab has two HMDs which is employed with the VC during the year. The first HMD, a

PT-Ol with a 420 * 230 display (OPTICS 1), is an inexpensive and rugged device which is used

for test and development. For interaction with the virtual environment, however, the PT-Ol is

inadequate; the device's pixel and color resolution severely limits the fine details in the

environment. The other HMD, an n-Vision HMD with 1280 * 960 pixel format and fifty degree

field of view in monoscopic display mode (Lewis), works exceptionally well with the VC

environment. The color and pixel resolution matches or outperforms the CRT displays in the

Graphics Lab. The visual improvement the n-Vision HMD offers is an excellent tool for

demonstrating the capabilities of the fully immersive.

// GEARKNOB
if (Globals->Gear_Knob) // GearJCnob is true if the button is pressed
{
static float GearKnobAdjustment = O.Of; // Variable remembers state of knob

float Gear_Lt_Adjustment = O.Of; // Default position of gear lights is off
Globals->Gear_Knob = FALSE; // GearJCnob button must be pressed

// again to accomplish this code
if(Gear_Knob_Adjustment== O.Of) { // If the gear knob is up...

Gear_Knob_Adjustment = 50.0f; // put the gear knob model down
Gear_Lt_Adjustment = 180.0f; // and flip lights to'on'position

}
else // Else

Gear_Knob_Adjustment = O.Of; // raise the landing gear knob model
pfDCSRot(gear_knob->RotDCS, O.Of, 0.0, Gear_Knob_Adjustment); // Carry out commands
pfDCSRot(gear_nose_lt->RotDCS, O.Of, 0.0, Gear_Lt_Adjustment); // and adjust lights
pfDCSRot(gear_left_lt->RotDCS, O.Of, 0.0, Gear_Lt_Adjustment);
pfDCSRot(gear_right_lt->RotDCS, O.Of, 0.0, Gear_Lt_Adjustment);

} // Other models can be adjusted here

VC. Figure 5-6. The case statement for controlling the depiction of landing gear.

55

The differences between the HMD and CRT (window) are the views each provides into the

virtual environment. The HMD accommodates freedom of motion in the virtual reality while the

window view is free from restrictions in the real world. During flight, the freedom of movement

the HMD allows does not initially make controlling the aircraft easier than piloting with the CRT

view. During the VC demonstration at the AFA Convention the difficulties involved with using an

HMD became apparent.

The 1994 Air Force Association (AFA) Convention. The 1994 AFA Convention was the

best opportunity this year to have actual pilots, video gaming would-be pilots, and non-computer

literate laymen fly the Photo-Realistic AFIT VC. In a three day period, approximately seventy

people used the VC, the Synthetic Battle Bridge, and the Satellite Modeler. At the convention, a

controller guided the VC simulation with the keyboard functions as the convention attendees flew

the VC. The advantages and disadvantages of the HMD were deduced from observing the

conference participants.

Two advantages the HMD provided were: 1) the potential for more realistic flight and

2) the capability to remove distractions from the user's view. First, the HMD gave users the

opportunity to employ more realistic flight techniques. One experienced pilot used the look-before-

you-leap capability to successfully perform 'text book' maneuvers. Second, the HMD presented a

more immersive environment with fewer distractions compared to the CRT. At the convention, the

immersion phenomenon was demonstrated most often when participants tried to reach for the

virtual controls they saw. In addition, participants wearing an HMD were able to fly without

distractions. Often, participants were very surprised by the size of the crowd watching their flight

because the n-Vision HMD used blocked out the outside world from the participants' field-of-view.

Initially, the HMD was more difficult to use than the CRT because users were

unaccustomed to the free movement it offered. While the HMD view depended on the position of

the user's head, the CRT's window view remained fixed. For example, conference participants

would often 'forget' where the front of the aircraft was pointing. The participants would look

towards the point they wanted to fly while the aircraft was headed in a different direction. The

56

CRT does not have this problem because the view was fixed. People without flying experience

(actual or video) had the most difficulty adjusting to the HMD. After watching people make this

mistake repeatedly on the first day of the conference, they were instructed on the basics of HMD

assisted flight. With these three simple instructions, attendees were noted to be far more proficient

flying on the last two days of the conference than they had been on the first day. The instructions

and rationale follows.

The participant was instructed to:

1. look toward the front of the aircraft.
Reason: this act oriented their head to the forward direction.

2. align his/her body with his/her head to face the same direction.
Reason: otherwise, during the flight, the participant's head aligned with their
body to face out the side of the aircraft instead of the front.

3. always keep a portion of the main instrument panel in his/her field-of-view
while flying.
Reason: this provided another point of reference needed for level flight.

Without sensory feedback providing the motion cues of an actual aircraft, participants on

the first day of the conference often lost their bearings while flying the VC. These participants

would fly roller-coaster flight paths, never actually bringing the nose of the VC and their field of

view along the same axis. After receiving pre-flight instructions, most participants did not

encounter the same problem. Thus, while not having motion feedback is a problem, people were

able to overcome this obstacle once they knew how to properly deal with it.

5.3 Recommendations

The Photo-Realistic AFIT Cockpit has put into place the tools needed to interact with

realistic controls within a virtual environment. Suggestions for further research include areas such

as improving the: 1) crew station, 2) head-tracking algorithm, 3) mouse interface, 4)structural

integrity of the VC code, and 5) transmission of the cockpit's internal status.

First, as a vital component of the immersion phenomenon, the crew station requires much

work before it can be considered a fully functional photo-realistic environment. Studies should be

57

continued on the following aspects: 1) complete the modeling of sub-consoles in the forward crew

station, 2) model the rear crew station, and 3) add functionality to the switches in both crew

stations. Presently, toggling a switch has no effect on the aircraft other than moving the switch.

Second, the head-tracking algorithm is an area which needs further investigation because

the present method is inadequate. The technique for head-tracking converts the raw XYZ

coordinates provided by a single Polhemus 3-Space Fastrak into the view's heading, pitch, and roll

(hpr) within the virtual environment. The current system generates unnatural motion based on the

relative locations of the Polhemus transmitter to the Fastrak receiver. For example, looking down

(moving your chin to your chest) while wearing the HMD generates a virtual image akin to placing

your head between your knees. With some practice, a user is able to avoid movements which lead

to unnatural virtual environment responses. However, requiring users to 'avoid' natural movements

is a restriction which dampens the feel of virtual reality. Furthermore, teaching users to avoid

actions is not the purpose of the VC. Ideally, natural motion should be reflected inch-for-inch and

degree-for-degree in the virtual environment.

Third, alternatives or improvements to the mouse interface should be explored. The

current mouse interface requires the pilot to look at the cursor to align it with the switch he/she

wants to toggle. Although the actions are easy to master, the amount of time needed to accomplish

a simple task is much longer than it would in real life. Other methods which require less look down

time should be investigated. For example, new speech recognition systems with large vocabularies

may be versatile enough to meet the demands of the VC (Roe). A possible improvement is to allow

the pilot to script a planned sequence of cursor movements that she/he will need during a high

stress maneuver.

Fourth, research over the past three years has stressed the structural integrity of the code.

Students have followed the incremental approach to advancing the VC; each new student built on

the work of the previous students. While each student has attempted to maintain a modular

approach, every new module added has been slightly different from the previous work in style and

function. As a result, the VC code has grown overly complicated. The VC uses global variables

58

like patch wires to allow communication between modules. I strongly believe that a new truly

modular code could be developed using sound software engineering practices. Modularity should

then be demonstrated by applying multiple aircraft beds to the VC.

One last area for future research is transmission of the cockpit's internal status to other

users on the network with a need to know the status. For example, if a rear station is installed in

the F-15E, then an interactive protocol will have to be developed so that the pilot and the

backseater may interact within the simulation. Also, such a protocol could send information to an

instructor/observer at a remote site. Ideally, the instructor/observer at a single workstation will be

able to monitor the progress of multiple VCs.

5.4 Summary

This thesis improves the immersive quality of the AFIT VC by putting the VCs pilot in a

virtual environment with the F-15E forward crew station controls and a command interface. The

HMD interface has also been enhanced to increase the utility of the new controls within the virtual

environment. This research provides the ability to display the status of the controls within the

cockpit and to input commands directly into the virtual environment. Future research can advance

this work a number of directions such as transmitting and receiving cockpit status to remote F-15E

back seat on the DIS network.

59

Appendix A

Appendix A contains a photograph of the models built for the forward crew station. The

models developed for the main instrument panel arc shown in A. 1 followed by the left console in

A.2 and the right console in A.3.

A. 1 Main Instrument Panel Models

Figure A. 1-1. Navigation Panel Model and HUD Display Control Panel.

60

Figure A. 1-2. Navigation Panel Schematic.

HUD
Brightness

Control •

Day/Auto/Night

Video Brightness

\,
BRT

OFF-

NORM

REJ1 §

REJ2^

_, HUD/
I DAY

5) Y AUTO

Jf NIGHT

A/A
AM

BIT

NAV

(- BRT / CONT

0
'-MIN

INST A/G

EOUEE3UEE3

Contrast
Control

Figure A. 1-3. HUD Display Control Panel Schematic.

61

Figure A. 1-4. Fire Warning/Extinguishing Control Panel Model.

LENGINER

IE Fl EH
0 PI >H

Figure A. 1-5. Fire Warning/Extinguishing Control Panel Schematic.

62

Figure A. 1-6. Utility and Primary Hydraulic Pressure Indicator Models

Figure A. 1-7. Utility and Primary Hydraulic Pressure Indicator Schematics.

63

Figure A. 1-8. Landing Gear Panel Model.

_1 NOSE tE) ©
ff LEFT |@|niGHTJ

ü ® ©
WARN

O TONE
N SIL ®
LDGGR

Figure A. 1-9. Landing Gear Panel Schematic.

64

Figure A. 1-10. From Left Clockwise: Armament Control Panel, Standby Air Speed Indicator, Standby
Altitude Indicator, Standby Altimeter, Emergency Jettison Select Switch, Vertical Velocity Indicator,

and Angle of Attack Indicator Models.

/@
@

fARMT©
MAN ALIN „

HEL 5tL

__[__ OFF JETT

Wfi gaj^COMHI

(1 JETTJln J-A)A

© MASTER
ARM -

»

SAFE

m
Ä j

X f®

EMERGJETT

Figure A. 1-11. From Left Clockwise: Armament Control Panel, Standby Air Speed Indicator, Standby
Altitude Indicator, Standby Altimeter, Emergency Jettison Select Switch, Vertical Velocity Indicator,

and Angle of Attack Indicator Schematics.

65

Figure A. 1-12. From Top Left to Right: Analog Clock. Cabin Pressure Indicator, Engine Monitor
Display, and Fuel Quantity Indicator Models.

© ©
/ L ENGINE R \

3 3 RPM % 3 ?
33GTEMP-C 33D

IDDQC PPH 33DC

> ^ POS >,>•

j >»v SO ,/- |»4 50
100 100

k 35 OILPSI JQD /

© ©

^onöHoTölO
'■] TOTAL LBS

LEFT RIGHT

TANK 1.
INTl WING

FEED

J BIT

EXT WING

EXT CTR

CON
TANK

Figure A. 1-13. From Top Left to Right: Analog Clock, Cabin Pressure Indicator. Engine Monitor
Display, and Fuel Quantity Indicator Schematics.

66

Figure A. 1-14. Warning Lights and Multipurpose Display Models.

BIT-

Brightness-

X)

>=*

=

®
V V V V V V

D

D D D D D
/>, i s\ i S\

©

Q

D
*=<

D-

ON

OFF

D
D
D
w
D
«

, 8BT

D

S\ /H, /H, A /H, X W

£

-Power

-Contrast

Figure A. 1-15. Multipurpose Display Schematic (Warning Lights not Available).

67

A.2 Left Console Models.
PJP^P^P^pH ^■^V 1 ^^^| ^AHTI SKID
^^^^^^| |^^^

1 INLET RAMP <** ^
AUTO f»

""° A A A
£ f—1 #f

TAXI
LK2HT

| i^i^iVHHWIi^HiV ^^|
Figure A.2-1. Miscellaneous Control Panel Model.

M
NLETRAMP jy/ I

ROLL RAno/-~.AUTC>_N LDG S
AUTO /ßgN\ /jpR\ LIGHT C

F

"£MERG— (• •,,F

EMERG I. R v> ^

§> ® UGH'T

Figure A.2-2. Miscellaneous Control Panel Schematic.

68

WING Cm CONFTANK
1 MJOf TRAMS |

""" # "°"" #
' STOf REFUCL '

OUMT
SLIPWAY

F
it

ägt (wn>E

o

w
E
L

CONFTANK EXT TRANS f
EMERG TRANS CONFTANK ^

L 41 " II
NORM WUKlFcTR «J

"«'

Figure A.2-5. Fuel Control Panel Model.

CTR CONFTANK
-STOP TRANS

) NORM IKTUl) NORM (

■ STOP REFUEL -

DUMP

©.
CONF TANK
EMERG TRANS

NORM

EXT TRANS

CONF TANK

SLIPWAY F
ORIOE y

L
o
p
E

(K> CLOSE

Figure A.2-6. Fuel Control Panel Schematic.

69

I l^^^^^M ■

H

TEWS
CAUTION ICS It-«

W"0 mc VW/TOWE M
HOLD RAOORIOE SIIENCE |

^b NOHM ^} ON ^ $

WHO or»

UHF ANT VHFAIIT TONE dPHERTlXT
upf>cn urpcn UHM ONLY ■*

A AUTO A A or» A A

1
MOOE ^^ IIAITW f

B LIOHT H^^| L0W F

f * 1
| IHH^lHI 1

Figure A.2-7. Identification Friend or Foe and Miscellaneous Panel Model.

&
* CAUTION (WW) -|- ICS
O LAUNCH \^ O WPN

Q

CflYPTO MIC VWTONE M

MOLD BADOfllOE SILENCE j

ZERO ((§j) OFF U§j) ©
UHF ANT VHP ANT TONE CIPHER TEXT

UPPER UPPER UHF 1 ONLT

LOWER LOWER UHF 2 NORM

OUT tjöj; OFF

Figure A. 2-8. Identification Friend or Foe and Miscellaneous Panel Schematic.

70

TF RDR RDR ALT
OVERRIDE STBY

OFF ±m^ ON

INS 1
STORE-AUGN

^NAV FLIR
CAIN
LEVEL

Ik
JTIDS cc

RESET

Figure A.2-9. Sensor Control Panel Model.

OFF

INS

OFF

TF RDR RDR ALT RADAR

ON OVERRIDE STBY V^

0" \£~L~^?N PUL1"'
DSTBY (üö})ON /xC\\ 1

TV" 1 II ((M-EMERG

o
| i | -NAV FLIR ^

STORE »LION '»GAIN | w S

OFF ,J-^ GC-1, °iä!pi. ON E

-NAV' ((7y^l (S)STBV S

OtJLL^ JTIDS OFF
/ POLL r-r

OFF _i NOR" u
v —^ ' RESET

■SIL

Figure A.2-10. Sensor Control Panel Schematic.

71

Figure A.2-11. Anti-Collision Control Panel Model.

FORMATION CQ™"0N (§) POSITION
2

OFF

H0N
N-f-f/OFF

ON 2 3

1,

VERT TAIL
FLOOD

OFF
*■ EL

XT 5 TT

BRT BRT FLASH w BflT

DIM s-.
-Y OFF @

Figure A.2-12. Anti-Collision Control Panel Schematic.

72

Figure A.2-13. Nuclear Control Panel Model.

© _ NUCLEAR
© CONSENT -fr
w ARM jßy P

o); «ff« u

® (?5\ JETTISON ©
V» ENABLE ß

Figure A.2-14. Nuclear Control Panel Schematic.

73

Figure A.2-15. Control Augmentation System Control Panel Model.

YAW
ON

ROLL
ON

PITCH /»
ON USfl

(ft"8) -BESET- (ftQ«) -RESET- ((ß$&\

(®) ^-^ (®) OFF \äy OFF ^4=^ OFF
r-BIT—i TF

COUPLE
T/O TRIM

OFF

Auto TF
Couple Switch

Figure A.2-16. Control Augmentation System Control Panel Schematic.

74

A3 Right Console.
_ g^g^g^g^g^g^^B^^g^^ j^H
^^M ̂ ^Vg 1 1 ■7

w

UJOW

In*»
§
§s%s
I

|^^B ̂ ■■■■■■i^^^^^H ̂ |

Figure A.3-1. Environmental Control System and Anti-Ice Control Panel Model.

PI TOT ENG
WINDSHIELO HEAT HEAT

ON ON ON

F OFF TEST ~I

Figure A.3-2. Environmental Control System and Anti-Ice Control Panel Schematic.

75

Figure A.3-3. Air Conditioner Control Panel Model.

TEMP

AIR
CÖND

AUTO

MAN

OFF

COLD HOT

FLOW
MAX

NORM |

MIN

BOTH

L
ENG

R
ENG

OFF

Figure A.3-4. Air Conditioner Control Panel Schematic.

76

!■

. CONSOLE INSTPNL

VW/ ^------H 1/ 1
J ort^^Bm arr^^wi

* LT
R TEST UF-

1 mi ^M

STBY
COUP

k ON ON ^m

»t. ~* I- f
CHART LT DISPLAY

DAY

D LJ MMHT

,
WARNING
CAUTION

STORM
ROOD ft

OF^pBRT
RESET

OfF^Vt'"

Figure A.3-5. Interior Light Control Panel Model.

CONSOLE @ INST PNL

OFF am OFF ART

STBY
COMP

XOFF OFF

V CHAflT LT

SRT OFF

®

DISPLAY
DAY

©
OFF ^ BHT

WARNING
CAUTION

STORM
FLOOO

Figure A.3-6. Interior Light Control Panel Schematic.

77

V
T
R

RCD

MIN
REMAIN

RECORD
ENABLE

RESET (*> EOT
n «ÜS W

UNTHREAD

Figure A.3-7. Video Tape Recorder Control Panel Model.

4®
£~ T

®1@

MIN
REMAIN

RESET

o

R
E
E

N
crE

D to
(ft @J

RCD

EOT lh|2|7|

Figure A.3-7. Video Tape Recorder Control Panel Schematic.

78

■ ̂̂^^^^■1 1 EMCRGGEN
L OM R AUTO c L ON R 1 H

G
|

W OFF^ ISOLATE " ^OFF W
L REAOY-| R

s s „BCSCTs • * s s
N
E

G H g A X A G
M R W T ON « M

"■ P A E
j F R OFFJ F I

^1 ̂ ^■■^^■I^^^^^^H ̂ H
Figure A.3-9. Engine Control Panel Model.

Figure A.3-10. Engine Control Panel Schematic.

79

■.: -..■-«.■■■ ■■'•:j

•■••■■■' ■ ■■.^^■-i
t.iiSVvv.-Aj

OXYGEN REGULATOR
PRESURE DEMAND

FLOW

EMERGENCY

NORMAL
TEST

MASK

100 \
OXYGEN ON
i

SUPPLYj
NORMAL
OXYGEN OFF

Figure A.3-11. Oxygen Regulator Control Panel Model.

OXYGEN REGULATOR
PRESSURE DEMAND

o
FLOW

• EMERGENCY

.NORMAL

•TEST (fr MASK *Q/

100% _
OXYGEN ON

SUPPLY
NORMA

^ OXYGEN v*tDFF

Figure A.3-12. Oxygen Regulator Control Schematic.

80

1

c -«»+ FAST ERECT LAT
T

o
M #

T

y—■

A
PUSH OG
^^f CONP^ ^SLAVED

8
S TO SYNC ^^

* K *

Figure A.3-13 Compass Control Panel Model

Figure A.3-13 Compass Control Panel Schematic.

81

Appendix B

B.l Introduction
Appendix B presents the series of steps I used to: 1) place a model in the VC's environment, 2)
place the dynamic switch model, and 3) position the mouse-panel and button. This appendix offers
an example illustrating the three step process for co-locating a mouse-panel button with the nuclear
control switch. Section B.2 is a brief description of the code used to render the static and dynamic
parts which make up the left console. The placement of mouse-panels and buttons are described in
sections B.3 and B.4 respectively. Section B.5 shows the header files "leftconsole.h,"
"left_panel.h," and "nuc_panel.h".

B.2 Displaying the Static and Dynamic Models
The nuclear control panel is located just forward of the throttle on the left console. This panel, like
the others on each console, is a static display. Rather than position each static panel separately,
the static parts of left console are placed as one model (leftconsole) into the simulation.

// Class: LEFTCONSOLE_CLASS
//
// Purpose: Call back function for drawing left console readouts.
//
// Author: Milton Diaz
//
// Written in AT&T C++.
//
// Released into the public domain.
Ill

«include "sim.h"
«include "simmodels.h"
«include "leftconsole.h"

void LEFTCONSOLE_CLASS::init()
{
int found;
pfMatrix m,n,scale,orient;

// Create oxygen generator as an object in the simulation
left_console = new Flt_Model();
left_console->readmodel(CONSOLES_FILE, CONSOLESJD, found);

The scale matrix and translation vectors do not change the model because the model is positioned
correctly. The rotational matrix applied to the model, identical to the matrix applied to the VC's F-
15E, correctly orients the console in the virtual environment.

// Add it to the scene in Y out the nose, Z up coords
pfMakeScaleMat(scale,1.0f, l.Of, l.Of); // scaling matrix
// positive x = out the planes right wing tip

82

pfMakeTransMat(m, -O.Of, O.Of, O.Of); //translation vector
pfMakeEulerMat(orient,-90.0f, O.Of, 180.0f); // Rotation matrix
pfMultMat(n,orient,scale);
pfMultMat(m,n,m);
scale_location = pfNewSCS(m);
pfAddChild(Ac->Model->root, scalejocation);
pfAddChild(scale_location,left_console->root);

The nuclear control panel's dynamic parts are the red switch cover and the switch beneath the
cover. Like the console, the switches are also multiplied by a unit value scaling matrix. The
rotation matrix is identical to the left console's rotation in order to align the switch with the VC's F-
15E model. However, unlike the static models, the dynamic parts are placed at the origin within
the MultiGen modeling environment rather than at the desired location within the F-15E model. By
placing dynamic models at the origin, finding the rotation becomes trivial.

To find the needed dynamic model translation, location of the static switch's origin is found
using MultiGen. The translation values are equal to the model xyz coordinates values displayed by
MultiGen. For example, the red switch cover values used in the "pfMakeTransMat (m, -0.239f,
5.586f, l.Of);" are derived from the corresponding MultiGen values: X= 5.586, Y= -0.239, and
Z=-1.0.

// //
// The Nuclear Control panel has one covered switch //
// This code establishes the starting positions of the //
// switches.
//

// RED SWITCH COVER
redswitch_cover = new Flt_Model();
redswitch_cover->readmodel(REDSWITCHCOVER_FILE,REDSWITCHCOVER_rD, found);

// Add it to the scene in Y out the nose, Z up coords
pfMakeScaleMat(scale,1.0f, l.Of, l.Of); // Scale Matrix
// positive x = out the planes right wing tip
pfMakeTransMat(m, -0.239f, 5.586f, l.Of); //Translation vector
pfMakeEulerMat(orient,-90.0f, O.Of, 180.0f); // Rotation Matrix
pfMultMat(n,orient, scale);
pfMultMat(m,n,m);
scalejocation = pfNewSCS(m);
redswitch_cover->RotDCS = pfNewDCS();
pfAddChild(Ac->Model->root, scalejocation);
pfAddChild(scale_location, redswitch_cover->RotDCS);
pfAddChild(redswitch_cover->RotDCS, redswitch_cover->root);

// NUC SWITCH -//
nucswitch = new Flt_Model();
nucswitch->readmodel(STANDARDSWITCH_FILE, STAND ARDSWITCHJD, found);
// Add it to the scene in Y out the nose, Z up coords
pfMakeScaleMat(scale, l.Of, l.Of, l.Of); // scaling matrix
// positive x = out the planes right wing tip
pfMakeTransMat(m,-0.217f, 5.590f, l.OOlf); // tranlation vector
pfMakeEulerMat(orient,-90.0f, -20.0f, 180.0f); // orientation matrix

83

pfMultMat(n,orient,scale);
pfMultMat(m,n,m);
scalejocation = pfNewSCS(m);
nucswitch->RotDCS = pfNewDCS();
pfAddChild(Ac->Model->root, scalejocation);
pfAddChild(scale_location, nucswitch->RotDCS);
pfAddCWld(nucswitch->RotDCS, nucswitch->root);
}

// Function: drawleftconsole
lll
void LEFTCONSOLE_CLASS: :draw_leficonsole()

{
}

Displaying changes in the status of dynamic models is accomplished in the propagate function.
The model is adjusted by toggling through the set of possible positions until the desired position is
reached. For example, the nuclear control panel has two moving parts controlled by one button.
When the button is activated, the "Globals->Nuc_Arm_Switch" condition becomes true and the
two moving parts are redrawn based on the previous condition.

void LEFTCONSOLE_CLASS: :propagate()
{
if (Globals->Nuc_Arm_Switch)
{
static int NucArmSwitchAngle;
switch (Nuc_Arm_Switch_Angle)

{
case 0: // If the red switch cover is closed, open it!
NucArmSwitchAngle = 1 ; // Set condition = condition 1

// condition 1 means Red Switch Open and to Toggle switch is safed
pfDCSRot(redswitch_cover->RotDCS, O.Of, -60.0, O.Of);
break;

case 1: // Condition 1 then set toggle to jettison enable
NucArmSwitchAngle = 2 ; // Set condition = Condition 2
pfDCSRot(nucswitch->RotDCS, O.Of, -40.0, O.Of);
break;

case 2: // Condition 2 then safe & close switches
NucArmSwitchAngle = 0 ; // Set condition to Zero condition
pfDCSRot(redswitch_cover->RotDCS, O.Of, 0.0, O.Of);
pfDCSRot(nucswitch->RotDCS, O.Of, 0.0, O.Of);
break;

default:
Nuc_Arm_Switch_Angle = 0 ; // precaution to reset condition if values is

} // out of range.
Globals->Nuc_Arm_Switch = FALSE;

}
}

84

B.3 Positioning Panels
The left_panel.cc places a mouse-panel over the left console model in the virtual

environment. The mouse panel defines the area upon which the mouse is confined. The left
console's four corners are passed to the mouse cursor routines by the "GetPointx" functions
shown below. The console's corner coordinate values were found with the MultiGen modeling tool.

//==
//
// File: left_panel.cc
//
// Description: This is the class definition for the left panel
//
// Author: Milton Diaz
// Date: June 94
//
// Adapted from the AFIT Information Pod Code by Vanderburgh, Kestermann, & Rohrer
// Date: May 94
//
//==

#include "left_panel.h"
#include <iostream.h>

void Left_Panel_Type::Update_Children(pfSeg * Segment, int MouseButtonStatus, pfVec3
XFingerMarker)

{
// Update subpanels
nuc_panel.Update_Base (Segment, Mouse_Button_Status, X_Finger_Marker);

}

void Left_Panel_Type::Get_Point_l (pfVec3& Point)
{
PFSET_VEC3 (Point, O.Of, 0.579f, O.Of);
};

void Left_Panel_Type::Get_Point_2 (pfVec3& Point)
{
PFSET_VEC3 (Point, 0.193f, 0.579f, O.Of);
};

void Left_Panel_Type::Get_Point_3 (pfVec3& Point)
{
PFSET_VEC3 (Point, 0.193f, O.Of, O.Of);
};

85

void Left_Panel_Type::Get_Point_4 (pfVec3& Point)
{
PFSET_VEC3 (Point, O.Of, O.Of, O.Of);
};

void Left_Panel_Type::Register_Callbacks ()
{

pfNodeTravFuncs (OpaqueGeometry,
PFTRAV_DRAW,
NULL,
&Left_Panel_Draw_Stufi);

pfNodeTravData (OpaqueGeometry,
PFTPvAV_DRAW,
this);

};

The sub-panel which contains the nuclear panel's switches and the "X" shaped cursor are defined in
the initialize_children routine. The values passed in "nuc_panel.Init_Base (0.096f, 0.489f, O.Of,
*Get_Matrix(), O.Olf, O.Olf, O.Olf);" are the xyz-coordinate values, the parent panel's coordinate
matrix, and the xyz-scaling factor. The xyz-coordinate values are also found using MultiGen.
Also, the coordinate values are found relative to the coordinates of "pointl." The Additional sub-
panels would be initialized in a similar manner.

void Left_Panel_Type::Initialize_Children ()
{

// Initialize sub-panels
nuc_panel.Init_Base (0.096f, 0.489f, O.Of, *Get_Matrix(), O.Olf, O.Olf, O.Olf);

// Set up cursor feedback flags
Set_X_Finger_Marker(l); //<-true

};

//
// Draw_Stuff
//
// Try drawing stuff on the panel. Because this is a function the member
// information is passed in as Data and then typecast to the class
// that it came from. You can now access information in the class
// by dereferencing the variable "This" (note the capital "T")
II
long Left_Panel_Draw_Stuff (pfTraverser* T, void* Data)
{

pfPushState ();
pfBasicState ();
Globals->Z_Offset_Flag = FALSE;

86

// Convert to member function -
Left_Panel_Type *This = (Left_Panel_Type*)Data;

// Call base draw routine
//***!!! Please always call this routine in the panel callback
This->Draw_Base();

The "This->nuc_panel.Draw_Base();M function takes care of putting mouse activated
buttons into the simulation. This will be shown in the next section.

// Draw children
This->nuc_panel.Draw_Base();

pfPopState ();

return PFTRAV_CONT;
}

B. 4 Positioning Sub-Panels and Buttons
The NucPanelType is a sub-panel type. This code initializes the positions of all the buttons on
the sub-panel. The "button init2" call specifies the rectangular size of the buttons.

// File: nuc_panel.cc
//
// Description: This is the class definition for the nuc_panel sub-panel
//
// Authored by: Milton Diaz
// Date: June 1994
// Adapted from code developed by: Vanderburgh, Kestermann, & Rohrer
// Date: May 94
//
//================================= =——
#include "nucjpanel.h"
#include "GraphText.h" // used to keep text in perspective size
#include "labfonth" // used to label button
#include "common_pod_colors.h" // used to pass colors to button

void Nuc_Panel_Type::Initialize_Children ()
{

Globals->Nuc_Arm_Switch = FALSE;
// Set up buttons
// Input parameters to class ButtonType.Init:
// (button size, subpanel matrix, postion x,y,z, "on"-color, "off-color"-color,

"on"-text, "off'-text)

// Position the CONTROL button
Nuclear_Consent_Button.Init2 (3.Of, 1.0, CurrentMatrix,

(short)Button_Type_2::NONE, 3.8f, 1.3f, O.Of,
Red_Color, Medium_Gray_Color, " "," ");

}

87

The sub-panel checks for the following conditions: 1) MouseLeftButtonOn is true (the left
button was pressed), 2) PushLastFrame is false (prevents multiple toggle signals from one
press), and 3) "X_On_Button2(Pointer_Finger, NuclearConsentButton, XFingerMarker)" is
true (meaning the mouse cursor is on a button). When all these conditions are true, an intersection
has occurred. The global flags are set to "TRUE" in the intersects code section below. Other
sections of code will use the globals set here to generate the proper response. For example, the left
console code in section B.2 uses the "Globals->Nuc_Arm_Switch" flag to toggle the cycle through
the possible switch positions.

void Nuc_Panel_Type::Update_Children (pfSeg* PointerFinger,
int Mouse_Left_Button_On, pfVec3 XFingerJMarker)

{
static int PushLastFrame = 0; //<-- used to toggle button in place

//— handle button actions
if (!Mouse_Left_Button_On)

PushLastFrame = 0;

// Check to see if intersection
if ((!Push_Last_Frame) &&

Mouse_Left_Button_On &&
X_On_Button2(Pointer_Finger, NuclearConsentButton, XFingerMarker))

{
// return the pod to its initial starting position from when the program began
PushLastFrame = 12;
NuclearConsentButtonState = 1;
Set_ARM_Switch(Globals->Nuc_Arm_Switch);

// Set Additional Globals Here!
}

else
NuclearConsentButtonState = 0;

}

The VC's active button set is not normally drawn. However, the ability to draw buttons remains
for debugging and reprogramming purposes. When adding a new button, a programmer will need
to use this feature to verify the buttons are where he/she placed them.
Thus, each new button added should also be inserted here.

void NucPanelType: :Draw_Children()
{
if (Globals-> View_Buttons) // if we need to draw buttons then continue

{
pushmatrixO;

// Draw the button
Nuclear_Consent_Button.Draw2 (NuclearConsentButtonState);
popmatrix();

} //endif
}

88

For each intersection tested in the above routine, the global variable corresponding to the selected
button should be set. These variables may be set above or as a procedure. The following example
is a procedural toggle. For panels with more than one switch, the procedural approach yields a
cleaner code.

// //
void Nuc_Panel_Type::Set_ARM_Switch (boolean Flag)
{

Globals->Nuc_Arm_Switch = !Flag;
}

B.5 Header Files
The header files for the code discussed in sections B.2-4 is presented below. The mouse panels
technique is based on the AFIT Information Pod developed at AFIT (Kestermann; Stytz and
others).

The leftconsole header file.
#include "sim.h"
#ifhdef _LEFTCONSOLE_CLASS
#define _LEFTCONSOLE_CLASS
#include <ulocks.h>
#include "airplanejesth"
#include"global_declarations_test.h"
#include "flt_model.h"
class Airplane;
struct leftconsole_struct

{
};

class LEFTCONSOLE_CLASS
{
private:

pfSCS* scalejocation;
FltModel* leftconsole;
FUModel* redswitch_cover; // NUC CONTROL PANEL
Flt_Model* nucswitch; // NUC CONTROL PANEL

// Flt_Model* emergenerator;
// Flt_Model* fast_erect;
// Flt_Model* vtrrecorder;
// Flt_Model* edit_edition;

public:
Airplane* Ac;

void init();
void draw_leftconsole();
void propagate();

};
#endif

89

The left_panel header file.

//
// File: left_panel.h
//
// Description: This is the class definition for the left panel
//
//

#ifndef _LEFT_P ANEL_TYPE_H
#define _LEFT_PANEL_TYPE_H

#include "panel_type_test.h"
#include "button_type.h"
#include "nuc_panel_test.h"
#include"global_declarations_test.h"
#include "mRS232port.h"

//
// Callbacks:
//
extern long Left_Panel_Draw_Stuff (pfTraverser*, void*);

class LeftPanelType : public PanelType
{
// Sub-panels
Nuc_Panel_Type nuc_panel;
// other stuff
friend long LeftPanelDrawStuff (pfTraverser*, void*);
void Get_Point_l (pfVec3& Point);
void Get_Point_3 (pfVec3& Point);
void Get_Point_4 (pfVec3& Point);
void RegisterCallbacks ();
void Initialize_Children ();

public:
void Update_Children(pfSeg *Segment, int Mouse_Button_Status, pfVec3 X_Finger_Marker);
void Get_Point_2 (pfVec3& Point); //put this down here to get panel extents

};
#endif

90

The nuc_panel header file.

//
// File: nuc_panel.h
//
// Description: This is the class definition for the Nuc_panel sub-panel that
//
//
//===
#ifndef _nuc_panel_H
#defme _nuc_panel_H

#include "buttonjype.h"
#include "button_type_2.h"
#include "sub_panel_type.h"
#include "global_declarations_test.h"

class Nuc_Panel_Type : public Sub_Panel_Type
{
private:
// Button types

Button_Type_2Nuclear_Consent_Button;
// Button state

int Nuclear_Consent_Button_State; // 1 = yes, 0 = no

void Set_ARM_Switch (boolean Flag);

public:
// Mandatory Virtual Stuff

void InitializeChildren ();
void UpdateChildren (pfSeg* PointerFinger,

int MouseLeftButtonOn, pfVec3 XFingerMarker);
void Draw_Children();

};
#endif

91

Appendix C

C. 1 Running the Virtual Cockpit
To start the VC without the HMD, follow these steps:

1) enter the directory with the executable file named "plane"

2) ensure the third line offastrak.dat is "0".

3) ensure the HOTAS is connected to the system in port 1

4) at the keyboard, enter "plane<cr>"

5) you must initialize the HOTAS if the HOTAS is being used for the first time or another

HOTAS has been previously initialized

6) the program will take approximately 30 seconds to start

To start the VC with the HMD, follow these steps:

1) enter the directory with the executable file named "plane"

2) "1" must be the value on the third line offastrak.dat

3) ensure the HOTAS is connected to the system in port 1

4) ensure the Fastrak is connected to the system in port 2 and the system has started

The VC takes care of running and shutting down the application

5) at the keyboard, enter "plane<cr>"

6) you must initialize the HOTAS if the HOTAS is being used for the first time or another

HOTAS has been previously initialize.

7) to initialize the Fastrak, wear the HMD in the pilot's position and enter <cr> when

prompted

8) the program will take approximately 30 seconds to start

The eye point in HMD and CRT modes may be adjusted by the U, D, F, B, L, and R keys. These

keys are used to set the pilot in a comfortable position in the VC. The position is adjusted

permanently; although the movements may always be reversed, they can not be reset during the

simulation.

U move eye point up 0.5 feet (in the virtual environment)

D move eye point down 0.5 feet

F move eye point forward 0.5 feet

B move eye point back 0.5 feet

L move eye point left 0.5 feet

R move eye point right 0.5 feet

92

The arrow keys and number pad only move the eye point in CRT keys are used to look around

when in the CRT mode.

t move eye point up 1.0 foot

i move eye point down 1.0 foot

-» move eye point right 1.0 foot

<- move eye point left 1.0 foot

1 roll view counterclockwise

2 pitch view down

3 roll view clockwise

4 turn view heading left

5 RESET VIEW

6 turn view heading right

7 not used

8 pitch view up

9 not used

ENTER move view point forward 1 foot

+ move view point backwards 1 foot

Other commands used at the keyboard.

Q Display mouse-panel buttons

P Pause simulation

Fl display performer statistics

F2 toggle HMD tracking on

F3 Toggle CRT on, HMD tracking off

F8 reset simulation

ESC QUIT

Del turns on Radar; do not turn radar on when the net is empty

This key is needed for HOTAS which are not have fully functional.

93

C.2 Global Declarations
The Global declarations declared in the 1994 VC are listed. These variables are used in addition to
the globals declared in previous work.

Ill
II globaljypes.h
// Defines all type defined structures and constants used throughout
// the Virtual Cockpit system.
// History:
// 1 May 93 Initial Development
//
lll
#ifndef _GLOB ALJTYPES
#define _GLOBAL_TYPES

include "pf.h"
#include "globals.h"
// New 1994 Net stuff
#include"DIS_v2_cockpit_obj_mgr.h"
#include "vc_net_manager.h"
#include "simentitymgr.h"
#include "model_mgr.h"

lll
II STRUCTURE AND ENUM TYPES
lll

II
// Global stuff: (put in shared memory)
//
typedef struct
{

// LEFT HAND SIDE OF COCKPIT
boolean Nuc_Arm_Switch; // NUCLEAR CONTROL PANEL

The global variables are set when the button corresponding to the variable is set. The Oxygen
Control Panel switches are the only working switches on the right hand side of the cockpit. The
EmergencyOxygenSwitchAngle and PercentOxygenSwitchAngle variables are used to keep
track of the switches position.

// RIGHT HAND SIDE OF CONTROL PANEL
boolean Emergency_Oxygen_Switch; // OXYGEN REGULATOR PANEL
int EmergencyOxygenSwitchAngle;
boolean On_Off_Oxygen_Switch; // OXYGEN REGULATOR PANEL
boolean Percent_Oxygen_Switch; // OXYGEN REGULATOR PANEL
int PercentOxygenSwitchAngle;

94

The buttons co-located with each of the active switches and knobs on the VC front instrument
panel is listed here according by panel. Not all buttons have been activated. For example, buttons
on the navigation panel's key pad remain to be activated.

// INSTRUMENT PANEL
boolean Nav_Sym_Brt_Knob, //NAV PANEL

Nav_LCD_Brt_Knob,
Nav_Vidio_Brt_Knob,
NavVidioContrastKnob,
Nav_Radiol3_Vol_Knob,
Nav_Radio24_Vol_Knob,
Armt_Safe_Switch,
Armt_Select_Knob,
AMAD_Discharge_Switch,
AMAD_Warning_Lt_Switch,
AMAD_LEngine_Warning_Lt_Switch,
AMAD_REngine_Warning_Lt_Switch,

// ARMAMENT CONTROL PANEL

// AMAD FIRE-WARNING PANEL

FuelQuantityKnob,
GearKnob,
GearNoseLt,
Gear_Left_Lt,
GearRightJLt,
WarningMasterCautionSwitch
Warning_Spare_l_Switch,
Warning_Spare_2_Switch,
Warning_Spare_3_Switch,
Warning_Spare_4_Switch,
Warning_Emis_Lmt_Switch,
Warning_Ai_Sam_Switch,
Warning_Low_Alt_Switch,
WarningObstSwitch,
Warning_Tf_Fail_Switch,
Warning_Can_Unkld_Switch,
Warning_Laser_Armed_Switch;

// FUEL QUANTITY PANEL
// LANDING GEAR CONTROL PANEL

// WARNING LIGHTS

// GENERAL AirCraft CONDITION
boolean Afterburner,

Reset_AcftState_Position,
View_Buttons,
Update_View_Switch,
radarcursortoggle,
Z_Offset_Flag;

pfMatrixtranslate,scale,orient,multimatrix;

// If the aircraft is in AB then the fuel
consumption routine will need to know. This flag
raises the issue.
Set when reset command is given
// AIRCRAFT VIEW FLAGS
// Switch Turns on the radar update displays
// Toggle radar cursor movement rules

95

These variables are used by the network, model, and entity managers.
//NETWORKSTUFF
VC_Net_Manager NetMan;
SimEntityMgr SimMan;
Sim_Entity_Mgr* Netobj;
Model_Manager Net_Mod_Man;
DIS_v2_cockpit_object_manager SendMan;
DIS_v2_cockpit_object_manager*Net;

} Shared;

#endif

96

Bibliography

Aeronautical Systems Division. F-15E Human Engineering Design Approach Document-
Operator (DIDNo. DI-H-7056/T). Revision D (Final Submission); Contract F33657-84-C-2228.
Ohio: Wright-Patterson Air Force Base, 1 May 1988.

Astheimer, Peter, Wolfgang Feiger, and Stefan Müller. "Virtual Design: A Generic VR System
For Industrial Applications," Computer & Graphics; An International journal 17: 671-679, 1993.

Aukstakalnis, Steve and David Blatner. Silicon Mirage: The Art and Science of Virtual Reality.
Peachpit Press, Berkeley, CA: 1992.

Bess, Rick D. "Image Generation Implications for Networked Tactical Training Systems," 1993
IEEE Annual Virtual Reality International Symposium. 308-317. NJ: IEEE, 1993.

Bryson, Steve. "Virtual Reality In Scientific Visualization," Computer & Graphics; An
International journal 17: 679-685, 1993.

Bryson, Steve and Creon Levit. "The Virtual Windtunnel: An Environment for the Exploration of
the Three-Dimensional Computer Generated Flowfields," IMAGE VI Conference: 137-139,
Arizona 1992.

Butterworth, Jeff, Andrew Davidson, Stephen Hench, and T. Marc Olano. "3DM: A Three
Dimensional Modeler Using a Head-Mounted Display," Proceedings 1992 Symposium on
Interactive 3D Graphics: 135-138, Massachusetts, 29 March-1 April 1992.

Clausewitz, Carl Von. On War. Princeton, NJ: Princeton University Press, 1989.

Cooke, Joseph M., Michael J. Zyda, David R. Pratt, and Robert B. McGhee. "NPSNET: Flight
Simulation Dynamic Modeling Using Quaterions," Presence 4. 404-421, 1992.

"DIS Mixes Real, Virtual," Aviation Week & Space Technology. 73: May 9, 1994.

DeHaemer, Michael J., and Michael J. Zyda. "Simplification of Objects Rendered by Polygonal
Approximations," Computers & Graphics, 13: 175-184, 1991.

Dyer, Gwynne. War. New York, NY: Crown Publishers, 1985.

Earle, Steph. Chief of Training and Evaluation, 448th Missile Squadron, Grand Forks AFB, ND.
Personal interview. 20 September 1994.

Erichsen, Matthew Nick. Weapon System Sensor Integration for a DIS-Compatible Virtual
Cockpit. MS Thesis, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base,
OH, AFIT/GCS/ENG/93-07, December 1993.

97

Figueiredo, Mauro, Klaus Böhm, and Jose Teixeira. "Advanced Interaction Techniques in Virtual
Environments," Computer & Graphics; An International journal 17: 655-662, 1993.

Furness. Thomas A. Ill and Dean F. Kocian. "Putting Humans Into Virtual Space," Armstrong
Aerospace Medical Research Laboratory, WPAFB, OH.

Gerhard, William Edward Jr. Weapon System Integration for the AFIT Virtual Cockpit. MS
Thesis, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base, OH,
AFIT/GCS/ENG793-10, December 1993.

Hazer, Kaleem Jr. and Ringler, Daniel L. Applicability of Design-To-Cost to Simulator
Acquisition. MS Thesis, Air Force Institute of Technology (AU), Wright-Patterson Air Force
Base, OH, SLSR 36-76A, June 1976.

Institute for Simulation and Training, 12424 Research Parkway, Suite 300, Orlando FL 32826.
Proposed IEEE Standard Draft Standard for Information Technology - Protocols for Distributed
Interactive Simulation Applications Version 2.0 Second Draft, March 1993. Contract Number
N61339-911-C-0091.

Kestermann, Jim B. Immersing the User in a Virtual Environment: The AFIT Information Pod
Design and Implementation. MS thesis, Air Force Institute of Technology (AU), Wright-
Patterson Air Force Base, OH, AFIT/GCS/ENG/94D-13, December 1994.

Kriss, Jordon and Paul Kubiak. Air Force Human Factors Lab/Crew Station Evaluation Facility,
Wright-Patterson Air Force Base. Personal interview. 10 March 1994.

Lewis, Christopher. President, n-Vision. Personal interview. 17 September 1994.

Ling, Daniel T. Beyond Visualization - Virtual Worlds for Data Understanding. Research Report
RC 15479 (#68850). IBM Research Division, T.J. Watson Research Center, NY: IBM, 2/9/90.

Markman, Steven R. "Capabilities of Airborne and Ground Based Flight Simulation," in Flight
Simulation/Simulators. Aerospace Technology Conference & Exposition, Technical Session.
35-42. PA: Society of Automotive Engineers, Inc., October, 1985.

McCarty, W. Dean. Rendering the Out-the-Window View for the AFIT Virtual Cockpit. MS
thesis. Air Force Institute of Technology (AU), Wright-Patterson Air Force Base, OH,
AFIT/GCS/ENG/93M-04, March 1993.

McLendon, Patricia. IRIS Performer Programming Guide. Silicon Graphics Inc., Mountain View,
California, 1992.

Rohrer, Jimmie J. Design and Implementation of Tools to Increase user Control and Knowledge
Elicitation in a Virtual Battlespace. MS thesis, Air Force Institute of Technology (AU), Wright-
Patterson Air Force Base, OH, AFIT/GCS/ENG/94D-20, December 1994.

98

Rolfe, J.M. and K.J. Staples, editors. Flight Simulation. New York, NY: Cambridge University
Press, 1986.

Ross, Milton C. and Gerald L. Yarger. A Parametric Costing Model For Simulator Acquisition.
MS thesis, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base, OH, SLSR
22-76B, September 1976.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice Hall 1991.

Schwarzkopf, H. Norman and Peter Petre. It Doesn't Take A Hero. New York, NY: Bantam
Books, 1992.

Software Systems. "MultiGen Modeler's Guide: Revision 14," San Jose, CA: March 1994.

Roe, David B. and Jay G. Wilson. "Whither Speech Recognition: The Next 25 Years," IEEE
Communications Magazine: 54-62: November 1993.

Stytz, Martin R. Professor, School of Engineering (EN), Air Force Institute of Technology (AU),
Wright-Patterson Air Force Base, OH. Personal interview. 21 November 1994.

Stytz, Martin R, Steven S. Sheasby, Keith Shomper, Jim Kestermann, J.J. Rohrer, and John C.
Vanderburgh. "Software Architecture and User Interfaces for Distributed Virtual Environments,"
Submitted for publication. 1994.

Sutherland, Ivan. "The Ultimate Display," Proceedings of the IPIP Congress 2. 506-508. 1965.

Switzer, John C. A Synthetic Environment Flight Simulator The AFIT Virtual Cockpit. MS
thesis, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base, OH,
AFIT/GCS/ENG/92D-17, December 1992.

Taylor, S. Craig. Wooden Ships andiron Men: Naval Warfare During the Age of Sail.
Baltimore, Maryland: AvalonHill, 1975.

Vanderburgh, John C. Space Modeler: An Expanded, Distributed, Virtual, Environment for
Space Visualization. MS thesis, Air Force Institute of Technology (AU), Wright-Patterson Air
Force Base, OH, AFIT/GCS/ENG/94D-23, December 1994.

Venolia, Dan. "Facile 3D Direct Manipulation," in Human Factors in Computing Systems,
INTERCHI '93 Conference Proceedings. ACM/SIGCHJ Amsterdam, Netherlands. 31-36: 1993.

Zeltzer, David and Steven Drucker. "A Virtual Environment System for Mission Planning,"
Proceeding of the 1992 IMAGE VI Conference. 125-133. Scottsdale, Arizona: July 1992.

99

Zyda, Michael J., David R. Pratt, John S. Falby, Chuck Lombardo, and Kristen M. Kelleher. "The
Software Required for the Computer Generation of Virtual Environments," Presence: Volume 2.
Number 2. 130:1993.

100

Vita

Capt Milton E. Diaz was born in San Juan, Puerto Rico, on 26 January 1960, the
youngest of four children. After graduating from Piedmont Hills High School, in San Jose,
California, he attended University of California Davis and earned a Bachelor of Science degree in
Electrical and Computer Engineering in 1983. On 28 March 1994, he was commissioned an
officer in the Air Force and served as Fire Control Project Engineer at the Avionics Laboratory,
Wright-Patterson AFB, Ohio. He was next assigned to the 448th Strategic Missile Squadron in
Grand Forks AFB, North Dakota from 1988 to 1992. While at the 448th , he served as Senior
Flight Commander and Chief of Trainer Maintenance until he was selected to pursue graduate
studies at the Air Force Institute of Technology, Dayton. Capt Diaz was graduated from AFIT
with a Master of Science degree in Computer Science in December 1994. Milton & Florence M.
Diaz are currently stationed at Los Angeles Air Force Base.

Permanent address: 1121 Caballo Court
San Jose, California 95132

101

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reportina burden for this collection of information is estimated to average 1 hour oer response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headauarters Services, Directorate tor Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (07C4-0183), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1994

REPORT TYPE ANO DATES COVERED
Master's Thesis

TITLE AND SUBTITLE

THE PHOTO-REALISTIC AFIT VIRTUAL COCKPIT

;: 6. AUTHOR(S)

I Milt E. Diaz, Capt, USAF

: 5. FUNDING NUMBERS

F

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

r 8. PERFORMING ORGANIZATION
f REPORT NUMBER

j AFIT/GCS/ENG/94D-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

ARPA/ASTO
3701 North Fairfax Drive
Arlington, VA 22203

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

'■-■ 11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT ■t 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

The Air Force Institute of Technology (AFIT) has pursued research in virtual environments since 1988. This
research expands the current capabilities of the AFIT Virtual Cockpit (VC) by increasing the realism of the
cockpit environment and improving the pilot's command interface. Realism is improved creating console elements
from texture maps and polygonal models; these elements include working dials, switches and circuit breakers.
The pilot command interface is improved in part by adapting the AFIT Information Pod using a two-dimensional
mouse input to the virtual three-dimensional environment. This immersive virtual environment is also improved
by modifications to the Head Mounted Display (HMD) reducing jitter and allowing the simulation pilot to adjust
his/her position within the cockpit.

14. SUBJECT TERMS

synthetic environments, virtual reality, flight simulator, distributed interactive sim-
ulation, computer graphics

15. NUMBER Or PAGES
112

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

I UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-'8
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C
G
PE

Contract
Grant
Program
Element

PR
TA
WU

Project
Task
Work Unit
Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

DOE - See authorities.
NASA- See Handbook NHB 2200.2.
NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categorie

NASA
NTIS

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

